16,977 research outputs found

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Learning fluid physics from highly turbulent data using sparse physics-informed discovery of empirical relations (SPIDER)

    Full text link
    We show how a complete mathematical description of a complicated physical phenomenon can be learned from observational data via a hybrid approach combining three simple and general ingredients: physical assumptions of smoothness, locality, and symmetry, a weak formulation of differential equations, and sparse regression. To illustrate this, we extract a system of governing equations describing flows of incompressible Newtonian fluids -- the Navier-Stokes equation, the continuity equation, and the boundary conditions -- from numerical data describing a highly turbulent channel flow in three dimensions. These relations have the familiar form of partial differential equations, which are easily interpretable and readily provide information about the relative importance of different physical effects as well as insight into the quality of the data, serving as a useful diagnostic tool. The approach described here is remarkably robust, yielding accurate results for very high noise levels, and should thus be well-suited to experimental data

    Learning stable and predictive structures in kinetic systems: Benefits of a causal approach

    Get PDF
    Learning kinetic systems from data is one of the core challenges in many fields. Identifying stable models is essential for the generalization capabilities of data-driven inference. We introduce a computationally efficient framework, called CausalKinetiX, that identifies structure from discrete time, noisy observations, generated from heterogeneous experiments. The algorithm assumes the existence of an underlying, invariant kinetic model, a key criterion for reproducible research. Results on both simulated and real-world examples suggest that learning the structure of kinetic systems benefits from a causal perspective. The identified variables and models allow for a concise description of the dynamics across multiple experimental settings and can be used for prediction in unseen experiments. We observe significant improvements compared to well established approaches focusing solely on predictive performance, especially for out-of-sample generalization
    • …
    corecore