543 research outputs found

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    The “Wireless Sensor Networks for City-Wide Ambient Intelligence (WISE-WAI)” Project

    Get PDF
    This paper gives a detailed technical overview of some of the activities carried out in the context of the “Wireless Sensor networks for city-Wide Ambient Intelligence (WISE-WAI)” project, funded by the Cassa di Risparmio di Padova e Rovigo Foundation, Italy. The main aim of the project is to demonstrate the feasibility of large-scale wireless sensor network deployments, whereby tiny objects integrating one or more environmental sensors (humidity, temperature, light intensity), a microcontroller and a wireless transceiver are deployed over a large area, which in this case involves the buildings of the Department of Information Engineering at the University of Padova. We will describe how the network is organized to provide full-scale automated functions, and which services and applications it is configured to provide. These applications include long-term environmental monitoring, alarm event detection and propagation, single-sensor interrogation, localization and tracking of objects, assisted navigation, as well as fast data dissemination services to be used, e.g., to rapidly re-program all sensors over-the-air. The organization of such a large testbed requires notable efforts in terms of communication protocols and strategies, whose design must pursue scalability, energy efficiency (while sensors are connected through USB cables for logging and debugging purposes, most of them will be battery-operated), as well as the capability to support applications with diverse requirements. These efforts, the description of a subset of the results obtained so far, and of the final objectives to be met are the scope of the present paper

    Multi-modal probabilistic indoor localization on a smartphone

    Get PDF
    The satellite-based Global Positioning System (GPS) provides robust localization on smartphones outdoors. In indoor environments, however, no system is close to achieving a similar level of ubiquity, with existing solutions offering different trade-offs in terms of accuracy, robustness and cost. In this paper, we develop a multi-modal positioning system, targeted at smartphones, which aims to get the best out of each of its constituent modalities. More precisely, we combine Bluetooth low energy (BLE) beacons, round-trip-time (RTT) enabled WiFi access points and the smartphone’s inertial measurement unit (IMU) to provide a cheap robust localization system that, unlike fingerprinting methods, requires no pre-training. To do this, we use a probabilistic algorithm based on a conditional random field (CRF). We show how to incorporate sparse visual information to improve the accuracy of our system, using pose estimation from pre-scanned visual landmarks, to calibrate the system online. Our method achieves an accuracy of around 2 meters on two realistic datasets, outperforming other distance-based localization approaches. We also compare our approach with an ultra-wideband (UWB) system. While we do not match the performance of UWB, our system is cheap, smartphone compatible and provides satisfactory performance for many applications

    RSSI Based Indoor Passive Localization for Intrusion Detection and Tracking

    Get PDF
    A real time system for intrusion detection and tracking based on wireless sensor network technology is designed by using the IITH mote which is de- veloped and designed in IIT Hyderabad as the communication module in the network.This paper describes the Device-Free Passive Localization system based on RSSI.The main objective of this paper is to design a DFP Local- ization system that is easily redeployable, recon�gurable, easy to use, and operates in real time. In addition the detection of humans is to be done.The em- bedded intrusion detection algorithm is designed so that it is able to cope with the limited resources, in terms of computational power and available memory space, of the microcontroller unit (MCU) found in the nodes. and various challenges and problem faced during the real test bed deployment and also proposed solutions to overcome them.We presented an alternative algo- rithm based on the minimum Euclidean distance classi�er.our result shows that the localization accuracy of this system is increased when using the proposed algorith
    corecore