89,861 research outputs found

    Positive semi-definite embedding for dimensionality reduction and out-of-sample extensions

    Full text link
    In machine learning or statistics, it is often desirable to reduce the dimensionality of a sample of data points in a high dimensional space Rd\mathbb{R}^d. This paper introduces a dimensionality reduction method where the embedding coordinates are the eigenvectors of a positive semi-definite kernel obtained as the solution of an infinite dimensional analogue of a semi-definite program. This embedding is adaptive and non-linear. A main feature of our approach is the existence of a non-linear out-of-sample extension formula of the embedding coordinates, called a projected Nystr\"om approximation. This extrapolation formula yields an extension of the kernel matrix to a data-dependent Mercer kernel function. Our empirical results indicate that this embedding method is more robust with respect to the influence of outliers, compared with a spectral embedding method.Comment: 16 pages, 5 figures. Improved presentatio

    Fast Robust PCA on Graphs

    Get PDF
    Mining useful clusters from high dimensional data has received significant attention of the computer vision and pattern recognition community in the recent years. Linear and non-linear dimensionality reduction has played an important role to overcome the curse of dimensionality. However, often such methods are accompanied with three different problems: high computational complexity (usually associated with the nuclear norm minimization), non-convexity (for matrix factorization methods) and susceptibility to gross corruptions in the data. In this paper we propose a principal component analysis (PCA) based solution that overcomes these three issues and approximates a low-rank recovery method for high dimensional datasets. We target the low-rank recovery by enforcing two types of graph smoothness assumptions, one on the data samples and the other on the features by designing a convex optimization problem. The resulting algorithm is fast, efficient and scalable for huge datasets with O(nlog(n)) computational complexity in the number of data samples. It is also robust to gross corruptions in the dataset as well as to the model parameters. Clustering experiments on 7 benchmark datasets with different types of corruptions and background separation experiments on 3 video datasets show that our proposed model outperforms 10 state-of-the-art dimensionality reduction models. Our theoretical analysis proves that the proposed model is able to recover approximate low-rank representations with a bounded error for clusterable data

    Semi-Supervised Discriminant Analysis Using Robust Path-Based Similarity

    Get PDF
    Linear Discriminant Analysis (LDA), which works by maximizing the within-class similarity and minimizing the between-class similarity simultaneously, is a popular dimensionality reduction technique in pattern recognition and machine learning. In real-world applications when labeled data are limited, LDA does not work well. Under many situations, however, it is easy to obtain unlabeled data in large quantities. In this paper, we propose a novel dimensionality reduction method, called Semi-Supervised Discriminant Analysis (SSDA), which can utilize both labeled and unlabeled data to perform dimensionality reduction in the semisupervised setting. Our method uses a robust path-based similarity measure to capture the manifold structure of the data and then uses the obtained similarity to maximize the separability between different classes. A kernel extension of the proposed method for nonlinear dimensionality reduction in the semi-supervised setting is also presented. Experiments on face recognition demonstrate the effectiveness of the proposed method. 1

    Compressed matched filter for non-Gaussian noise

    Full text link
    We consider estimation of a deterministic unknown parameter vector in a linear model with non-Gaussian noise. In the Gaussian case, dimensionality reduction via a linear matched filter provides a simple low dimensional sufficient statistic which can be easily communicated and/or stored for future inference. Such a statistic is usually unknown in the general non-Gaussian case. Instead, we propose a hybrid matched filter coupled with a randomized compressed sensing procedure, which together create a low dimensional statistic. We also derive a complementary algorithm for robust reconstruction given this statistic. Our recovery method is based on the fast iterative shrinkage and thresholding algorithm which is used for outlier rejection given the compressed data. We demonstrate the advantages of the proposed framework using synthetic simulations

    Robust Principal Component Analysis on Graphs

    Get PDF
    Principal Component Analysis (PCA) is the most widely used tool for linear dimensionality reduction and clustering. Still it is highly sensitive to outliers and does not scale well with respect to the number of data samples. Robust PCA solves the first issue with a sparse penalty term. The second issue can be handled with the matrix factorization model, which is however non-convex. Besides, PCA based clustering can also be enhanced by using a graph of data similarity. In this article, we introduce a new model called "Robust PCA on Graphs" which incorporates spectral graph regularization into the Robust PCA framework. Our proposed model benefits from 1) the robustness of principal components to occlusions and missing values, 2) enhanced low-rank recovery, 3) improved clustering property due to the graph smoothness assumption on the low-rank matrix, and 4) convexity of the resulting optimization problem. Extensive experiments on 8 benchmark, 3 video and 2 artificial datasets with corruptions clearly reveal that our model outperforms 10 other state-of-the-art models in its clustering and low-rank recovery tasks

    Maximum Entropy Linear Manifold for Learning Discriminative Low-dimensional Representation

    Full text link
    Representation learning is currently a very hot topic in modern machine learning, mostly due to the great success of the deep learning methods. In particular low-dimensional representation which discriminates classes can not only enhance the classification procedure, but also make it faster, while contrary to the high-dimensional embeddings can be efficiently used for visual based exploratory data analysis. In this paper we propose Maximum Entropy Linear Manifold (MELM), a multidimensional generalization of Multithreshold Entropy Linear Classifier model which is able to find a low-dimensional linear data projection maximizing discriminativeness of projected classes. As a result we obtain a linear embedding which can be used for classification, class aware dimensionality reduction and data visualization. MELM provides highly discriminative 2D projections of the data which can be used as a method for constructing robust classifiers. We provide both empirical evaluation as well as some interesting theoretical properties of our objective function such us scale and affine transformation invariance, connections with PCA and bounding of the expected balanced accuracy error.Comment: submitted to ECMLPKDD 201

    Robust 2D Joint Sparse Principal Component Analysis with F-Norm Minimization for Sparse Modelling: 2D-RJSPCA

    Full text link
    © 2018 IEEE. Principal component analysis (PCA) is widely used methods for dimensionality reduction and Lots of variants have been proposed to improve the robustness of algorithm, however, these methods suffer from the fact that PCA is linear combination which makes it difficult to interpret complex nonlinear data, and sensitive to outliers or cannot extract features consistently, i.e., collectively; PCA may still require measuring all input features. 2DPCA based on 1-norm has been recently used for robust dimensionality reduction in the image domain but still sensitive to noise. In this paper, we introduce robust formation of 2DPCA by centering the data using the optimized mean for two-dimensional joint sparse as well as effectively combining the robustness of 2DPCA and the sparsity-inducing lasso regularization. Optimal mean helps to improve the robustness of joint sparse PCA further. The distance in spatial dimension is measure in F-norm and sum of different datapoint uses 1-norm. 2DR-JSPCA imposes joint sparse constraints on its objective function whereas additional plenty term help to deal with outliers efficiently. Both theoretical and empirical results on six publicly available benchmark datasets shows that Optimal mean 2DR-JSPCA provides better performance for dimensionality reduction as compare to non-sparse (2DPCA and 2DPCA-L1) and sparse (SPCA, JSPCA)

    Manifold Based Deep Learning: Advances and Machine Learning Applications

    Get PDF
    Manifolds are topological spaces that are locally Euclidean and find applications in dimensionality reduction, subspace learning, visual domain adaptation, clustering, and more. In this dissertation, we propose a framework for linear dimensionality reduction called the proxy matrix optimization (PMO) that uses the Grassmann manifold for optimizing over orthogonal matrix manifolds. PMO is an iterative and flexible method that finds the lower-dimensional projections for various linear dimensionality reduction methods by changing the objective function. PMO is suitable for Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Canonical Correlation Analysis (CCA), Maximum Autocorrelation Factors (MAF), and Locality Preserving Projections (LPP). We extend PMO to incorporate robust Lp-norm versions of PCA and LDA, which uses fractional p-norms making them more robust to noisy data and outliers. The PMO method is designed to be realized as a layer in a neural network for maximum benefit. In order to do so, the incremental versions of PCA, LDA, and LPP are included in the PMO framework for problems where the data is not all available at once. Next, we explore the topic of domain shift in visual domain adaptation by combining concepts from spherical manifolds and deep learning. We investigate domain shift, which quantifies how well a model trained on a source domain adapts to a similar target domain with a metric called Spherical Optimal Transport (SpOT). We adopt the spherical manifold along with an orthogonal projection loss to obtain the features from the source and target domains. We then use the optimal transport with the cosine distance between the features as a way to measure the gap between the domains. We show, in our experiments with domain adaptation datasets, that SpOT does better than existing measures for quantifying domain shift and demonstrates a better correlation with the gain of transfer across domains
    • …
    corecore