160 research outputs found

    Listening for Sirens: Locating and Classifying Acoustic Alarms in City Scenes

    Get PDF
    This paper is about alerting acoustic event detection and sound source localisation in an urban scenario. Specifically, we are interested in spotting the presence of horns, and sirens of emergency vehicles. In order to obtain a reliable system able to operate robustly despite the presence of traffic noise, which can be copious, unstructured and unpredictable, we propose to treat the spectrograms of incoming stereo signals as images, and apply semantic segmentation, based on a Unet architecture, to extract the target sound from the background noise. In a multi-task learning scheme, together with signal denoising, we perform acoustic event classification to identify the nature of the alerting sound. Lastly, we use the denoised signals to localise the acoustic source on the horizon plane, by regressing the direction of arrival of the sound through a CNN architecture. Our experimental evaluation shows an average classification rate of 94%, and a median absolute error on the localisation of 7.5{\deg} when operating on audio frames of 0.5s, and of 2.5{\deg} when operating on frames of 2.5s. The system offers excellent performance in particularly challenging scenarios, where the noise level is remarkably high.Comment: 6 pages, 9 figure

    Binaural Source Separation with Convolutional Neural Networks

    Get PDF
    This work is a study on source separation techniques for binaural music mixtures. The chosen framework uses a Convolutional Neural Network (CNN) to estimate time-frequency soft masks. This masks are used to extract the different sources from the original two-channel mixture signal. Its baseline single-channel architecture performed state-of-the-art results on monaural music mixtures under low-latency conditions. It has been extended to perform separation in two-channel signals, being the first two-channel CNN joint estimation architecture. This means that filters are learned for each source by taking in account both channels information. Furthermore, a specific binaural condition is included during training stage. It uses Interaural Level Difference (ILD) information to improve spatial images of extracted sources. Concurrently, we present a novel tool to create binaural scenes for testing purposes. Multiple binaural scenes are rendered from a music dataset of four instruments (voice, drums, bass and others). The CNN framework have been tested for these binaural scenes and compared with monaural and stereo results. The system showed a great amount of adaptability and good separation results in all the scenarios. These results are used to evaluate spatial information impact on separation performance

    Using deep learning methods for supervised speech enhancement in noisy and reverberant environments

    Get PDF
    In real world environments, the speech signals received by our ears are usually a combination of different sounds that include not only the target speech, but also acoustic interference like music, background noise, and competing speakers. This interference has negative effect on speech perception and degrades the performance of speech processing applications such as automatic speech recognition (ASR), speaker identification, and hearing aid devices. One way to solve this problem is using source separation algorithms to separate the desired speech from the interfering sounds. Many source separation algorithms have been proposed to improve the performance of ASR systems and hearing aid devices, but it is still challenging for these systems to work efficiently in noisy and reverberant environments. On the other hand, humans have a remarkable ability to separate desired sounds and listen to a specific talker among noise and other talkers. Inspired by the capabilities of human auditory system, a popular method known as auditory scene analysis (ASA) was proposed to separate different sources in a two stage process of segmentation and grouping. The main goal of source separation in ASA is to estimate time frequency masks that optimally match and separate noise signals from a mixture of speech and noise. In this work, multiple algorithms are proposed to improve upon source separation in noisy and reverberant acoustic environment. First, a simple and novel algorithm is proposed to increase the discriminability between two sound sources by scaling (magnifying) the head-related transfer function of the interfering source. Experimental results from applications of this algorithm show a significant increase in the quality of the recovered target speech. Second, a time frequency masking-based source separation algorithm is proposed that can separate a male speaker from a female speaker in reverberant conditions by using the spatial cues of the source signals. Furthermore, the proposed algorithm has the ability to preserve the location of the sources after separation. Three major aims are proposed for supervised speech separation based on deep neural networks to estimate either the time frequency masks or the clean speech spectrum. Firstly, a novel monaural acoustic feature set based on a gammatone filterbank is presented to be used as the input of the deep neural network (DNN) based speech separation model, which shows significant improvement in objective speech intelligibility and speech quality in different testing conditions. Secondly, a complementary binaural feature set is proposed to increase the ability of source separation in adverse environment with non-stationary background noise and high reverberation using 2-channel recordings. Experimental results show that the combination of spatial features with this complementary feature set improves significantly the speech intelligibility and speech quality in noisy and reverberant conditions. Thirdly, a novel dilated convolution neural network is proposed to improve the generalization of the monaural supervised speech enhancement model to different untrained speakers, unseen noises and simulated rooms. This model increases the speech intelligibility and speech quality of the recovered speech significantly, while being computationally more efficient and requiring less memory in comparison to other models. In addition, the proposed model is modified with recurrent layers and dilated causal convolution layers for real-time processing. This model is causal which makes it suitable for implementation in hearing aid devices and ASR system, while having fewer trainable parameters and using only information about previous time frames in output prediction. The main goal of the proposed algorithms are to increase the intelligibility and the quality of the recovered speech from noisy and reverberant environments, which has the potential to improve both speech processing applications and signal processing strategies for hearing aid and cochlear implant technology

    MIMO-DoAnet: Multi-channel Input and Multiple Outputs DoA Network with Unknown Number of Sound Sources

    Full text link
    Recent neural network based Direction of Arrival (DoA) estimation algorithms have performed well on unknown number of sound sources scenarios. These algorithms are usually achieved by mapping the multi-channel audio input to the single output (i.e. overall spatial pseudo-spectrum (SPS) of all sources), that is called MISO. However, such MISO algorithms strongly depend on empirical threshold setting and the angle assumption that the angles between the sound sources are greater than a fixed angle. To address these limitations, we propose a novel multi-channel input and multiple outputs DoA network called MIMO-DoAnet. Unlike the general MISO algorithms, MIMO-DoAnet predicts the SPS coding of each sound source with the help of the informative spatial covariance matrix. By doing so, the threshold task of detecting the number of sound sources becomes an easier task of detecting whether there is a sound source in each output, and the serious interaction between sound sources disappears during inference stage. Experimental results show that MIMO-DoAnet achieves relative 18.6% and absolute 13.3%, relative 34.4% and absolute 20.2% F1 score improvement compared with the MISO baseline system in 3, 4 sources scenes. The results also demonstrate MIMO-DoAnet alleviates the threshold setting problem and solves the angle assumption problem effectively.Comment: Accepted by Interspeech 202

    End-to-end binaural sound localisation from the raw waveform

    Get PDF
    A novel end-to-end binaural sound localisation approach is proposed which estimates the azimuth of a sound source directly from the waveform. Instead of employing hand-crafted features commonly employed for binaural sound localisation, such as the interaural time and level difference, our end-to-end system approach uses a convolutional neural network (CNN) to extract specific features from the waveform that are suitable for localisation. Two systems are proposed which differ in the initial frequency analysis stage. The first system is auditory-inspired and makes use of a gammatone filtering layer, while the second system is fully data-driven and exploits a trainable convolutional layer to perform frequency analysis. In both systems, a set of dedicated convolutional kernels are then employed to search for specific localisation cues, which are coupled with a localisation stage using fully connected layers. Localisation experiments using binaural simulation in both anechoic and reverberant environments show that the proposed systems outperform a state-of-the-art deep neural network system. Furthermore, our investigation of the frequency analysis stage in the second system suggests that the CNN is able to exploit different frequency bands for localisation according to the characteristics of the reverberant environment
    corecore