2,814 research outputs found

    Vision-Based Road Detection in Automotive Systems: A Real-Time Expectation-Driven Approach

    Full text link
    The main aim of this work is the development of a vision-based road detection system fast enough to cope with the difficult real-time constraints imposed by moving vehicle applications. The hardware platform, a special-purpose massively parallel system, has been chosen to minimize system production and operational costs. This paper presents a novel approach to expectation-driven low-level image segmentation, which can be mapped naturally onto mesh-connected massively parallel SIMD architectures capable of handling hierarchical data structures. The input image is assumed to contain a distorted version of a given template; a multiresolution stretching process is used to reshape the original template in accordance with the acquired image content, minimizing a potential function. The distorted template is the process output.Comment: See http://www.jair.org/ for any accompanying file

    Cluster validity in clustering methods

    Get PDF

    Shape and Topology Constrained Image Segmentation with Stochastic Models

    Get PDF
    The central theme of this thesis has been to develop robust algorithms for the task of image segmentation. All segmentation techniques that have been proposed in this thesis are based on the sound modeling of the image formation process. This approach to image partition enables the derivation of objective functions, which make all modeling assumptions explicit. Based on the Parametric Distributional Clustering (PDC) technique, improved variants have been derived, which explicitly incorporate topological assumptions in the corresponding cost functions. In this thesis, the questions of robustness and generalizability of segmentation solutions have been addressed in an empirical manner, giving comprehensive example sets for both problems. It has been shown, that the PDC framework is indeed capable of producing highly robust image partitions. In the context of PDC-based segmentation, a probabilistic representation of shape has been constructed. Furthermore, likelihood maps for given objects of interest were derived from the PDC cost function. Interpreting the shape information as a prior for the segmentation task, it has been combined with the likelihoods in a Bayesian setting. The resulting posterior probability for the occurrence of an object of a specified semantic category has been demonstrated to achieve excellent segmentation quality on very hard testbeds of images from the Corel gallery

    Spinal cord gray matter segmentation using deep dilated convolutions

    Get PDF
    Gray matter (GM) tissue changes have been associated with a wide range of neurological disorders and was also recently found relevant as a biomarker for disability in amyotrophic lateral sclerosis. The ability to automatically segment the GM is, therefore, an important task for modern studies of the spinal cord. In this work, we devise a modern, simple and end-to-end fully automated human spinal cord gray matter segmentation method using Deep Learning, that works both on in vivo and ex vivo MRI acquisitions. We evaluate our method against six independently developed methods on a GM segmentation challenge and report state-of-the-art results in 8 out of 10 different evaluation metrics as well as major network parameter reduction when compared to the traditional medical imaging architectures such as U-Nets.Comment: 13 pages, 8 figure

    Learning the dynamics and time-recursive boundary detection of deformable objects

    Get PDF
    We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as non-parametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although the paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object
    • …
    corecore