604 research outputs found

    Vision Based Object Recognition and Localisation by a Wireless Connected Distributed Robotic Systems

    Get PDF
    Object recognition and localisation are important processes in computer vision and robotics. Advances in computer vision have resulted in many object recognition techniques, but most of them are computationally very intensive and require robots with powerful processing systems. For small robots, these techniques are not applicable because of the constraints of execution time. In this study, an optimised implementation of SURF based recognition technique is presented. Suitable image pre-processing techniques were developed which reduced the recognition time on small robots with limited processing resources. The recognition time was reduced from 39 seconds to 780 milliseconds. This recognition technique was adopted by a team of small robots which were given prior training to search for objects of interest in the environment. For the localisation of the robots and objects a new template, designed for passive markers based tracking, was introduced. These markers were placed on the top of each robot and they were tracked by the two ceiling mounted cameras. The information from both sources, that is ceiling mounted cameras and team of robots, was used collectively to localise the objects in the environment. The objects were localised with an error ranging from 2.8cm to 5.2cm from their actual positions in the test arena which has the dimensions of 150x163cm

    FPGA-based module for SURF extraction

    Get PDF
    We present a complete hardware and software solution of an FPGA-based computer vision embedded module capable of carrying out SURF image features extraction algorithm. Aside from image analysis, the module embeds a Linux distribution that allows to run programs specifically tailored for particular applications. The module is based on a Virtex-5 FXT FPGA which features powerful configurable logic and an embedded PowerPC processor. We describe the module hardware as well as the custom FPGA image processing cores that implement the algorithm's most computationally expensive process, the interest point detection. The module's overall performance is evaluated and compared to CPU and GPU based solutions. Results show that the embedded module achieves comparable disctinctiveness to the SURF software implementation running in a standard CPU while being faster and consuming significantly less power and space. Thus, it allows to use the SURF algorithm in applications with power and spatial constraints, such as autonomous navigation of small mobile robots

    Visual SLAM for flying vehicles

    Get PDF
    The ability to learn a map of the environment is important for numerous types of robotic vehicles. In this paper, we address the problem of learning a visual map of the ground using flying vehicles. We assume that the vehicles are equipped with one or two low-cost downlooking cameras in combination with an attitude sensor. Our approach is able to construct a visual map that can later on be used for navigation. Key advantages of our approach are that it is comparably easy to implement, can robustly deal with noisy camera images, and can operate either with a monocular camera or a stereo camera system. Our technique uses visual features and estimates the correspondences between features using a variant of the progressive sample consensus (PROSAC) algorithm. This allows our approach to extract spatial constraints between camera poses that can then be used to address the simultaneous localization and mapping (SLAM) problem by applying graph methods. Furthermore, we address the problem of efficiently identifying loop closures. We performed several experiments with flying vehicles that demonstrate that our method is able to construct maps of large outdoor and indoor environments. © 2008 IEEE

    Single and multiple stereo view navigation for planetary rovers

    Get PDF
    © Cranfield UniversityThis thesis deals with the challenge of autonomous navigation of the ExoMars rover. The absence of global positioning systems (GPS) in space, added to the limitations of wheel odometry makes autonomous navigation based on these two techniques - as done in the literature - an inviable solution and necessitates the use of other approaches. That, among other reasons, motivates this work to use solely visual data to solve the robot’s Egomotion problem. The homogeneity of Mars’ terrain makes the robustness of the low level image processing technique a critical requirement. In the first part of the thesis, novel solutions are presented to tackle this specific problem. Detection of robust features against illumination changes and unique matching and association of features is a sought after capability. A solution for robustness of features against illumination variation is proposed combining Harris corner detection together with moment image representation. Whereas the first provides a technique for efficient feature detection, the moment images add the necessary brightness invariance. Moreover, a bucketing strategy is used to guarantee that features are homogeneously distributed within the images. Then, the addition of local feature descriptors guarantees the unique identification of image cues. In the second part, reliable and precise motion estimation for the Mars’s robot is studied. A number of successful approaches are thoroughly analysed. Visual Simultaneous Localisation And Mapping (VSLAM) is investigated, proposing enhancements and integrating it with the robust feature methodology. Then, linear and nonlinear optimisation techniques are explored. Alternative photogrammetry reprojection concepts are tested. Lastly, data fusion techniques are proposed to deal with the integration of multiple stereo view data. Our robust visual scheme allows good feature repeatability. Because of this, dimensionality reduction of the feature data can be used without compromising the overall performance of the proposed solutions for motion estimation. Also, the developed Egomotion techniques have been extensively validated using both simulated and real data collected at ESA-ESTEC facilities. Multiple stereo view solutions for robot motion estimation are introduced, presenting interesting benefits. The obtained results prove the innovative methods presented here to be accurate and reliable approaches capable to solve the Egomotion problem in a Mars environment
    • …
    corecore