1,460 research outputs found

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Robust Stability of Switched Delay Systems with Average Dwell Time under Asynchronous Switching

    Get PDF
    The problem of robust stability of switched delay systems with average dwell time under asynchronous switching is investigated. By taking advantage of the average dwell-time method and an integral inequality, two sufficient conditions are developed to guarantee the global exponential stability of the considered switched system. Finally, a numerical example is provided to demonstrate the effectiveness and feasibility of the proposed techniques

    Output peak control of nonhomogeneous markov jump system with unit-energy disturbance

    Get PDF
    This paper considers output peak controller design for discrete nonhomogeneous Markov jump systems under unit-energy disturbance. The mode-dependent output peak feedback controller is designed to ensure that the resulting closed-loop system is stochastically stable and the peak of the output is within a specified range. Furthermore, the optimal energy-to-peak gain indices of the mode-dependent and the mode-independent state feedback controllers are evaluated and compared. A numerical example is presented to illustrate the applicability of the results obtained

    Analysis and synthesis of Markov Jump Linear systems with time-varying delays and partially known transition probabilities

    Get PDF
    In this note, the stability analysis and stabilization problems for a class of discrete-time Markov jump linear systems with partially known transition probabilities and time-varying delays are investigated. The time-delay is considered to be time-varying and has a lower and upper bounds. The transition probabilities of the mode jumps are considered to be partially known, which relax the traditional assumption in Markov jump systems that all of them must be completely known a priori. Following the recent study on the class of systems, a monotonicity is further observed in concern of the conservatism of obtaining the maximal delay range due to the unknown elements in the transition probability matrix. Sufficient conditions for stochastic stability of the underlying systems are derived via the linear matrix inequality (LMI) formulation, and the design of the stabilizing controller is further given. A numerical example is used to illustrate the developed theory. © 2008 IEEE.published_or_final_versio

    L

    Get PDF
    This paper is concerned with the problem of controller design for switched systems under asynchronous switching with exogenous disturbances. The attention is focused on designing the feedback controller that guarantees the finite-time bounded and L∞ finite-time stability of the dynamic system. Firstly, when there exists asynchronous switching between the controller and the system, a sufficient condition for the existence of stabilizing switching law for the addressed switched system is derived. It is proved that the switched system is finite-time stabilizable under asynchronous switching satisfying the average dwell-time condition. Furthermore, the problem of L∞ control for switched systems under asynchronous switching is also investigated. Finally, a numerical example is given to illustrate the effectiveness of the proposed method
    • …
    corecore