869 research outputs found

    Robust filtering for a class of nonlinear stochastic systems with probability constraints

    Get PDF
    This paper is concerned with the probability-constrained filtering problem for a class of time-varying nonlinear stochastic systems with estimation error variance constraint. The stochastic nonlinearity considered is quite general that is capable of describing several well-studied stochastic nonlinear systems. The second-order statistics of the noise sequence are unknown but belong to certain known convex set. The purpose of this paper is to design a filter guaranteeing a minimized upper-bound on the estimation error variance. The existence condition for the desired filter is established, in terms of the feasibility of a set of difference Riccati-like equations, which can be solved forward in time. Then, under the probability constraints, a minimax estimation problem is proposed for determining the suboptimal filter structure that minimizes the worst-case performance on the estimation error variance with respect to the uncertain second-order statistics. Finally, a numerical example is presented to show the effectiveness and applicability of the proposed method

    Optimal control with structure constraints and its application to the design of passive mechanical systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Page 214 blank.Includes bibliographical references.Structured control (static output feedback, reduced-order control, and decentralized feedback) is one of the most important open problems in control theory and practice. In this thesis, various techniques for synthesis of structured controllers are surveyed and investigated, including H2 optimization, H[infinity] optimization, L1 control, eigenvalue and eigenstructure treatment, and multiobjective control. Unstructured control-full- state feedback and full-order control-is also discussed. Riccati-based synthesis, linear matrix inequalities (LMI), homotopy methods, gradient- and subgradientbased optimization are used. Some new algorithms and extensions are proposed, such as a subgradient-based method to maximize the minimal damping with structured feedback, a multiplier method for structured optimal H2 control with pole regional placement, and the LMI-based H2/H[infinity]/pole suboptimal synthesis with static output feedback. Recent advances in related areas are comprehensively surveyed and future research directions are suggested. In this thesis we cast the parameter optimization of passive mechanical systems as a decentralized control problem in state space, so that we can apply various decentralized control techniques to the parameter design which might be very hard traditionally. More practical constraints for mechanical system design are considered; for example, the parameters are restricted to be nonnegative, symmetric, or within some physically-achievable ranges. Marginally statable systems and hysterically damped systems are also discussed. Numerical examples and experimental results are given to illustrate the successful application of decentralized control techniques to the design of passive mechanical systems, such as multi-degree-of-freedom tuned-mass dampers, passive vehicle suspensions, and others.by Lei Zuo.S.M

    Analysis and Design of Complex-Valued Linear Systems

    Full text link
    This paper studies a class of complex-valued linear systems whose state evolution dependents on both the state vector and its conjugate. The complex-valued linear system comes from linear dynamical quantum control theory and is also encountered when a normal linear system is controlled by feedback containing both the state vector and its conjugate that can provide more design freedom. By introducing the concept of bimatrix and its properties, the considered system is transformed into an equivalent real-representation system and a non-equivalent complex-lifting system, which are normal linear systems. Some analysis and design problems including solutions, controllability, observability, stability, eigenvalue assignment, stabilization, linear quadratic regulation (LQR), and state observer design are then investigated. Criterion, conditions, and algorithms are provided in terms of the coefficient bimatrices of the original system. The developed approaches are also utilized to investigate the so-called antilinear system which is a special case of the considered complex-valued linear system. The existing results on this system have been improved and some new results are established.Comment: 19 page

    Flight test trajectory control analysis

    Get PDF
    Recent extensions to optimal control theory applied to meaningful linear models with sufficiently flexible software tools provide powerful techniques for designing flight test trajectory controllers (FTTCs). This report describes the principal steps for systematic development of flight trajectory controllers, which can be summarized as planning, modeling, designing, and validating a trajectory controller. The techniques have been kept as general as possible and should apply to a wide range of problems where quantities must be computed and displayed to a pilot to improve pilot effectiveness and to reduce workload and fatigue. To illustrate the approach, a detailed trajectory guidance law is developed and demonstrated for the F-15 aircraft flying the zoom-and-pushover maneuver

    Proceedings of the 2011 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    This book is a collection of 15 reviewed technical reports summarizing the presentations at the 2011 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory. The covered topics include image processing, optical signal processing, visual inspection, pattern recognition and classification, human-machine interaction, world and situation modeling, autonomous system localization and mapping, information fusion, and trust propagation in sensor networks

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems

    Get PDF
    Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach
    corecore