1,565 research outputs found

    State Estimation for Fractional-Order Complex Dynamical Networks with Linear Fractional Parametric Uncertainty

    Get PDF
    This paper deals with state estimation problem for a class of fractional-order complex dynamical networks with parametric uncertainty. The parametric uncertainty is assumed to be of linear fractional form. Firstly, based on the properties of Kronecker product and the stability of fractional-order system, a sufficient condition is derived for robust asymptotic stability of linear fractional-order augmented system. Secondly, state estimation problem is then studied for the same fractional-order complex networks, where the purpose is to design a state estimator to estimate the network state through available output measurement, the existence conditions of designing state estimator are derived using matrix's singular value decomposition and LMI techniques. These conditions are in the form of linear matrix inequalities which can be readily solved by applying the LMI toolbox. Finally, two numerical examples are provided to demonstrate the validity of our approach

    Robust Control of Uncertain Time -Delay Systems.

    Get PDF
    Time-delay systems are common in industries. Direct analysis and synthesis of control systems with time delays are complicated and approximation methods such as Pade approximation are usually applied. However, the issues of control system robustness with respect to model uncertainties and approximation errors have not been sufficiently addressed. This dissertation focus on robustness of time-delay systems, especially robustness with respect to time delays, which has been discussed extensively using Lyapunov second method. We propose two methods in this dissertation to reformulate the problems into standard mu or Hinfinity problems. The first method involves representing the systems in linear functional transformation (LFT) framework and approximating delays by rational transfer functions. The approximation errors are then treated as uncertainties. We show that all the well-known techniques of Hinfinity control theory can be applied to this framework. Consequently, controller design becomes a routine process. We also show that the conventional Lyapunov method is a special case in our proposed framework and our proposed method offers less conservative results. In the second method, we treat uncertain delays as uncertainties with restricted phase angles and extend structured singular value to include phase information. We show that the extended small-mu theorem can be applied to analyze stability and performance of uncertain delay systems with many other type of uncertainties, such as plant model uncertainties and parametric uncertainties. Finally, we generalize the above techniques to linear systems with feedback connected nonlinear elements. Both time invariant and time-varying nonlinearities are discussed by incorporating circle/Popov criterion with small-mu theorem

    Design and analysis of robust controllers for directional drilling tools

    Get PDF
    Directional drilling is a very important tool for the development of oil and gas deposits. Attitude control which enables directional drilling for the efficient placement of the directional drilling tools in petroleum producing zones is reviewed along with the various engineering requirements or constraints. This thesis explores a multivariable attitude governing plant model as formulated in Panchal et al. (2010) which is used for developing robust control techniques. An inherent input and measurement delay which accounts for the plant's dead-time is included in the design of the controllers. A Smith Predictor controller is developed for reducing the effect of this dead-time. The developed controllers are compared for performance and robustness using structured singular value analysis and also for their performance indicated by the transient response of the closed loop models. Results for the transient non-linear simulation of the proposed controllers are also presented. The results obtained indicate that the objectives are satisfactorily achieved

    Development of Chatter Attenuation Robust Control for an Amb Machine Spindle

    Get PDF

    Design of robust control for uncertain fuzzy quadruple-tank systems with time-varying delays

    Get PDF
    Producción CientíficaThe robust H∞ observer-based control design is addressed here for non-linear Takagi-Sugeno (T-S) fuzzy systems with time-varying delays, subject to uncertainties and external disturbances. This is motivated by the quadruple-tank with time delay control problem. The observer design methodology is based on constructing an appropriate Lyapunov–Krasovskii functional (LKF) for an augmented system formed from the original and the delayed states. The bilinear terms are transferred to the linear matrix inequalities, thanks to a change of variables which can be solved in one step. Furthermore, by employing the L2 performance index, the adverse effects of persistent bounded disturbances is largely avoided. The proposed method has the advantage of relating the controller and Lyapunov function to both the original and delayed states. Then, the controller and observer gains are obtained simultaneously by solving these inequalities with off-the-shelf software (Yalmip/MATLAB toolbox). Finally, an application to a simulated quadruple-tank system with time delay is carried out to demonstrate the benefits of the proposed technique, showing a compromise between controller simplicity and robustness that outperforms previous approaches.Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Constrained robust model predictive control for time-delay descriptor systems with linear fractional uncertainty

    Get PDF
    This paper addresses the robust model predictive control (MPC) for a class of time delay descriptor systems with linear fractional uncertainty and input constrains. The systems are transferred to the piecewise continuous descriptor systems and a piecewise constant control sequence is calculated by minimizing the worst-case quadratic objective function. At each sampling internal, by means of Lyapunov theory and optimization theory, the optimal problem with infinite horizon objective function is reduced to a convex optimization problem involving linear matrix inequalities. The sufficient conditions for the existence of the state feedback control are derived and expressed as linear matrix inequalities. Further, an iterative model predictive control algorithm is proposed for the on-line synthesis of state feedback controllers with the conditions guaranteeing that the closed-loop descriptor systems are regular, impulse-free and robust stable. Finally, a numerical example is presented to show the efficiency of the proposed approach

    Finite Time Stability Criteria for Nonlinear Fractional Order Dynamical System

    Get PDF
    In this paper finite time stability criteria for a class of nonlinear fractional order delayed system is addressed. By using the generalized and classical Bellman-Gronwall’s approach sufficient conditions that guarantees system trajectories to stay within the a priori given set is obtained. Keywords: Nonlinear system, multiple time delays, Finite time stability, fractional order syste
    corecore