1,847 research outputs found

    μ-Dependent model reduction for uncertain discrete-time switched linear systems with average dwell time

    Get PDF
    In this article, the model reduction problem for a class of discrete-time polytopic uncertain switched linear systems with average dwell time switching is investigated. The stability criterion for general discrete-time switched systems is first explored, and a μ-dependent approach is then introduced for the considered systems to the model reduction solution. A reduced-order model is constructed and its corresponding existence conditions are derived via LMI formulation. The admissible switching signals and the desired reduced model matrices are accordingly obtained from such conditions such that the resulting model error system is robustly exponentially stable and has an exponential H∞ performance. A numerical example is presented to demonstrate the potential and effectiveness of the developed theoretical results

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Robust output stabilization: improving performance via supervisory control

    Full text link
    We analyze robust stability, in an input-output sense, of switched stable systems. The primary goal (and contribution) of this paper is to design switching strategies to guarantee that input-output stable systems remain so under switching. We propose two types of {\em supervisors}: dwell-time and hysteresis based. While our results are stated as tools of analysis they serve a clear purpose in design: to improve performance. In that respect, we illustrate the utility of our findings by concisely addressing a problem of observer design for Lur'e-type systems; in particular, we design a hybrid observer that ensures ``fast'' convergence with ``low'' overshoots. As a second application of our main results we use hybrid control in the context of synchronization of chaotic oscillators with the goal of reducing control effort; an originality of the hybrid control in this context with respect to other contributions in the area is that it exploits the structure and chaotic behavior (boundedness of solutions) of Lorenz oscillators.Comment: Short version submitted to IEEE TA
    corecore