25,805 research outputs found

    A space division multiplexed free-space-optical communication system that can auto-locate and fully self align with a remote transceiver

    Get PDF
    Free-Space Optical (FSO) systems offer the ability to distribute high speed digital links into remote and rural communities where terrain, installation cost or infrastructure security pose critical hurdles to deployment. A challenge in any point-to-point FSO system is initiating and maintaining optical alignment from the sender to the receiver. In this paper we propose and demonstrate a low-complexity self-aligning FSO prototype that can completely self-align with no requirement for initial manual positioning and could therefore form the opto-mechanical basis for a mesh network of optical transceivers. The prototype utilises off-the-shelf consumer electrical components and a bespoke alignment algorithm. We demonstrate an eight fibre spatially multiplexed link with a loss of 15 dB over 210 m

    Experimental Design for the LATOR Mission

    Full text link
    This paper discusses experimental design for the Laser Astrometric Test Of Relativity (LATOR) mission. LATOR is designed to reach unprecedented accuracy of 1 part in 10^8 in measuring the curvature of the solar gravitational field as given by the value of the key Eddington post-Newtonian parameter \gamma. This mission will demonstrate the accuracy needed to measure effects of the next post-Newtonian order (~G^2) of light deflection resulting from gravity's intrinsic non-linearity. LATOR will provide the first precise measurement of the solar quadrupole moment parameter, J2, and will improve determination of a variety of relativistic effects including Lense-Thirring precession. The mission will benefit from the recent progress in the optical communication technologies -- the immediate and natural step above the standard radio-metric techniques. The key element of LATOR is a geometric redundancy provided by the laser ranging and long-baseline optical interferometry. We discuss the mission and optical designs, as well as the expected performance of this proposed mission. LATOR will lead to very robust advances in the tests of Fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.Comment: 16 pages, 17 figures, invited talk given at ``The 2004 NASA/JPL Workshop on Physics for Planetary Exploration.'' April 20-22, 2004, Solvang, C
    • …
    corecore