70 research outputs found

    Suspended Load Path Tracking Control Using a Tilt-rotor UAV Based on Zonotopic State Estimation

    Full text link
    This work addresses the problem of path tracking control of a suspended load using a tilt-rotor UAV. The main challenge in controlling this kind of system arises from the dynamic behavior imposed by the load, which is usually coupled to the UAV by means of a rope, adding unactuated degrees of freedom to the whole system. Furthermore, to perform the load transportation it is often needed the knowledge of the load position to accomplish the task. Since available sensors are commonly embedded in the mobile platform, information on the load position may not be directly available. To solve this problem in this work, initially, the kinematics of the multi-body mechanical system are formulated from the load's perspective, from which a detailed dynamic model is derived using the Euler-Lagrange approach, yielding a highly coupled, nonlinear state-space representation of the system, affine in the inputs, with the load's position and orientation directly represented by state variables. A zonotopic state estimator is proposed to solve the problem of estimating the load position and orientation, which is formulated based on sensors located at the aircraft, with different sampling times, and unknown-but-bounded measurement noise. To solve the path tracking problem, a discrete-time mixed H2/H∞\mathcal{H}_2/\mathcal{H}_\infty controller with pole-placement constraints is designed with guaranteed time-response properties and robust to unmodeled dynamics, parametric uncertainties, and external disturbances. Results from numerical experiments, performed in a platform based on the Gazebo simulator and on a Computer Aided Design (CAD) model of the system, are presented to corroborate the performance of the zonotopic state estimator along with the designed controller

    Continuum Deformation of a Multiple Quadcopter Payload Delivery Team without Inter-Agent Communication

    Full text link
    This paper proposes continuum deformation as a strategy for controlling the collective motion of a multiple quadcopter system (MQS) carrying a common payload. Continuum deformation allows expansion and contraction of inter-agent distances in a 2D motion plane to follow desired motions of three team leaders. The remaining quadcopter followers establish the desired continuum deformation only by knowing leaders positions at desired sample time waypoints without the need for inter-agent communication over the intermediate intervals. Each quadcopter applies a linear-quadratic-Gaussian (LQG) controller to track the desired trajectory given by the continuum deformation in the presence of disturbance and measurement noise. Results of simulated cooperative aerial payload transport in the presence of uncertainty illustrate the application of continuum deformation for coordinated transport through a narrow channel

    Model Predictive Control for Micro Aerial Vehicles: A Survey

    Full text link
    This paper presents a review of the design and application of model predictive control strategies for Micro Aerial Vehicles and specifically multirotor configurations such as quadrotors. The diverse set of works in the domain is organized based on the control law being optimized over linear or nonlinear dynamics, the integration of state and input constraints, possible fault-tolerant design, if reinforcement learning methods have been utilized and if the controller refers to free-flight or other tasks such as physical interaction or load transportation. A selected set of comparison results are also presented and serve to provide insight for the selection between linear and nonlinear schemes, the tuning of the prediction horizon, the importance of disturbance observer-based offset-free tracking and the intrinsic robustness of such methods to parameter uncertainty. Furthermore, an overview of recent research trends on the combined application of modern deep reinforcement learning techniques and model predictive control for multirotor vehicles is presented. Finally, this review concludes with explicit discussion regarding selected open-source software packages that deliver off-the-shelf model predictive control functionality applicable to a wide variety of Micro Aerial Vehicle configurations

    A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems

    Get PDF
    Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem, trends, and challenges are described from three aspects. Conclusions of the paper are presented, and the future of SRURSs is discussed to enable further research interests

    Adaptive backstepping controller design of quadrotor biplane for payload delivery

    Get PDF
    Performance of the UAVs for a particular application can be enhanced by hybrid design, where take-off, hover, and landing happen like rotary-wing UAVs, and flies like fixed-wing UAVs. A backstepping controller and an adaptive backstepping controller are designed for trajectory tracking and payload delivery in a medical emergency or medical substance delivery like vaccine delivery in the presence of wind gust. Simulation results show that the backstepping controller effectively tracks the trajectory during the entire flight envelope, including take-off, hovering, the transition phase, level flight mode, and landing. A comparison between Backstepping, Integral Terminal Sliding Mode (ITSMC) and Adaptive Backstepping controllers for payload delivery show that the adaptive backstepping controller effectively tracks the altitude and attitude. ITSMC is capable of tracking the desired trajectory for a change in the mass but has sluggish response. The backstepping controller generates a steady-state error in altitude during the mass change in biplane-quadrotor.The publication of this article was funded by Qatar National Library.Scopu

    Parameter-robust linear quadratic Gaussian technique for multi-agent slung load transportation

    Get PDF
    This paper copes with parameter-robust controller design for transportation system by multiple unmanned aerial vehicles. The transportation is designed in the form of string connection. Minimal state-space realization of slung-load dynamics is obtained by Newtonian approach with spherical coordinates. Linear quadratic Gaussian / loop transfer recovery (LQG/LTR) is implemented to control the position and attitude of all the vehicles and payloads. The controller's robustness against variation of payload mass is improved using parameter-robust linear quadratic Gaussian (PRLQG) method. Numerical simulations are conducted with several transportation cases. The result verifies that LQG/LTR shows fast performance while PRLQG has its strong point in robustness against system variation

    A framework to design interaction control of aerial slung load systems: transfer from existing flight control of under-actuated aerial vehicles

    Get PDF
    This paper establishes a framework within which interaction control is designed for the aerial slung load system composed of an underactuated aerial vehicle, a cable and a load. Instead of developing a new control law for the system, we propose the interaction control scheme by the controllers for under-actuated aerial systems. By selecting the deferentially flat output as the configuration, the equations of motion of the two systems are described in an identical form. The flight control task of the under-actuated aerial vehicle is thus converted into the control of the aerial slung load system. With the help of an admittance filter, the compliant trajectory is generated for the load subject to external interaction force. Moreover, the convergence of the whole system is proved by using the boundedness of the tracking error of vehicle attitude tracking as well as the estimation error of external force. Based on the developed theoretical results, an example is provided to illustrate the design algorithm of interaction controller for the aerial slung load via an existing flight controller directly. The correctness and applicability of the obtained results are demonstrated via the illustrative numerical example

    AutoTrans: A Complete Planning and Control Framework for Autonomous UAV Payload Transportation

    Full text link
    The robotics community is increasingly interested in autonomous aerial transportation. Unmanned aerial vehicles with suspended payloads have advantages over other systems, including mechanical simplicity and agility, but pose great challenges in planning and control. To realize fully autonomous aerial transportation, this paper presents a systematic solution to address these difficulties. First, we present a real-time planning method that generates smooth trajectories considering the time-varying shape and non-linear dynamics of the system, ensuring whole-body safety and dynamic feasibility. Additionally, an adaptive NMPC with a hierarchical disturbance compensation strategy is designed to overcome unknown external perturbations and inaccurate model parameters. Extensive experiments show that our method is capable of generating high-quality trajectories online, even in highly constrained environments, and tracking aggressive flight trajectories accurately, even under significant uncertainty. We plan to release our code to benefit the community.Comment: Accepted by IEEE Robotics and Automation Letter
    • …
    corecore