2,030 research outputs found

    Stabilizing control for power converters connected to transmission lines

    Get PDF
    This paper proposes a switching control strategy for the set-point stabilization of a power converter connected via a transmission line to a resistive load. The strategy employs a Lyapunov function that is directly based on energy considerations of the power converter, as well as of the transmission line described by the telegraph equations. The proposed stabilizing switching control still allows a certain freedom in the choice of the control law, a comparison between a maximum descent strategy and a minimum commutation strategy being discussed on a simple example.

    An Intelligent and Fast Controller for DC/DC Converter Feeding CPL in a DC Microgrid

    Get PDF

    A survey of differential flatness-based control applied to renewable energy sources

    Get PDF
    Conference ProceedingsThis paper presents an overview of various methods used to minimize the fluctuating impacts of power generated from renewable energy sources. Several sources are considered in the study (biomass, wind, solar, hydro and geothermal). Different control methods applied to their control are cited, alongside some previous applications. Hence, it further elaborates on the adoptive control principles, of which includes; Load ballast control, dummy load control, proportional integral and derivative (PID) control, proportional integral (PI) control, pulse-width modulation (PWM) control, buck converter control, boost converter control, pitch angle control, valve control, the rate of river flow at turbine, bidirectional diffuser-augmented control and differential flatnessbased controller. These control operations in renewable energy power generation are mainly based on a steady-state linear control approach. However, the flatness based control principle has the ability to resolve the complex control problem of renewable energy systems while exploiting their linear properties. Using their flatness properties, feedback control is easily achieved which allows for optimal/steady output of the system components. This review paper highlights the benefits that range from better control techniques for renewable energy systems to established robust grid (or standalone generations) connections that can bring immense benefits to their operation and maintenance costs

    Contributions à la stabilisation des systèmes à commutation affine

    Get PDF
    Cette thèse porte sur la stabilisation des systèmes à commutation dont la commande, le signal de commutation, est échantillonné de manière périodique. Les difficultés liées à cette classe de systèmes non linéaires sont d'abord dues au fait que l'action de contrôle est effectuée aux instants de calcul en sélectionnant le mode de commutation à activer et, ensuite, au problème de fournir une caractérisation précise de l'ensemble vers lequel convergent les solutions du système, c'est-à-dire l'attracteur. Dans cette thèse, les contributions ont pour fil conducteur la réduction du conservatisme fait pendant la définition d'attracteurs, ce qui a mené à garantir la stabilisation du système à un cycle limite. Après une introduction générale où sont présentés le contexte et les principaux résultats de la littérature, le premier chapitre contributif introduit une nouvelle méthode basée sur une nouvelle classe de fonctions de Lyapunov contrôlées qui fournit une caractérisation plus précise des ensembles invariants pour les systèmes en boucle fermée. La contribution présentée comme un problème d'optimisation non convexe et faisant référence à une condition de Lyapunov-Metzler apparaît comme un résultat préliminaire et une étape clé pour les chapitres à suivre. La deuxième partie traite de la stabilisation des systèmes affines commutés vers des cycles limites. Après avoir présenté quelques préliminaires sur les cycles limites hybrides et les notions dérivées telles que les cycles au Chapitre 3, les lois de commutation stabilisantes sont introduites dans le Chapitre 4. Une approche par fonctions de Lyapunov contrôlées et une stratégie de min-switching sont utilisées pour garantir que les solutions du système nominal en boucle fermée convergent vers un cycle limite. Les conditions du théorème sont exprimées en termes d'Inégalités Matricielles Linéaires (dont l'abréviation anglaise est LMI) simples, dont les conditions nécessaires sous-jacentes relâchent les conditions habituelles dans cette littérature. Cette méthode est étendue au cas des systèmes incertains dans le Chapitre 5, pour lesquels la notion de cycles limites doit être adaptée. Enfin, le cas des systèmes dynamiques hybrides est exploré au Chapitre 6 et les attracteurs ne sont plus caractérisés par des régions éventuellement disjointes mais par des trajectoires fermées et isolées en temps continu. Tout au long de la thèse, les résultats théoriques sont évalués sur des exemples académiques et démontrent le potentiel de la méthode par rapport à la littérature récente sur le sujet.This thesis deals with the stabilization of switched affine systems with a periodic sampled-data switching control. The particularities of this class of nonlinear systems are first related to the fact that the control action is performed at the computation times by selecting the switching mode to be activated and, second, to the problem of providing an accurate characterization of the set where the solutions to the system converge to, i.e. the attractors. The contributions reported in this thesis have as common thread to reduce the conservatism made in the characterization of attractors, leading to guarantee the stabilization of the system at a limit cycle. After a brief introduction presenting the context and some main results, the first contributive chapter introduced a new method based on a new class of control Lyapunov functions that provides a more accurate characterization of the invariant set for a closed-loop system. The contribution presented as a nonconvex optimization problem and referring to a Lyapunov-Metzler condition appears to be a preliminary result and the milestone of the forthcoming chapters. The second part deals with the stabilization of switched affine systems to limit cycles. After presenting some preliminaries on hybrid limit cycles and derived notions such as cycles in Chapter 3, stabilizing switching control laws are developed in Chapter 4. A control Lyapunov approach and a min-switching strategy are used to guarantee that the solutions to a nominal closed-loop system converge to a limit cycle. The conditions of the theorem are expressed in terms of simple linear matrix inequalities (LMI), whose underlying necessary conditions relax the usual one in this literature. This method is then extended to the case of uncertain systems in Chapter 5, for which the notion of limit cycle needs to be adapted. Finally, the hybrid dynamical system framework is explored in Chapter 6 and the attractors are no longer characterized by possibly disjoint regions but as continuous-time closed and isolated trajectory. All along the dissertation, the theoretical results are evaluated on academic examples and demonstrate the potential of the method over the recent literature on this subject

    FLATNESS BASED CONTROL OF MICRO-HYDROKINETIC RIVER ELECTRIFICATION SYSTEM

    Get PDF
    Published ThesisIn areas where adequate water resource is available, hydrokinetic energy conversion systems are currently gaining recognition, as opposed to other renewable energy sources such as solar or wind energy. The operational principle of hydrokinetic energy is not similar to traditional hydropower generation that explores use of the potential energy of falling water, which has drawbacks such as the expensive construction of dams and the disturbance of aquatic ecosystems. Hence, hydrokinetic energy generates electricity by making use of underwater turbines to extract the kinetic energy of flowing water, with no construction of dams or diversions. A hydrokinetic turbine uses flowing water, which varies with climatic conditions throughout the year, to power the shaft of a generator, hence, generating an unstable energy output. The aim of this dissertation is to develop a controller that will be used to stabilize the output voltage and frequency generated in a hydrokinetic energy system. An overview of various methods used to minimize the fluctuating impacts of power generated from renewable energy sources is included in the current conducted research. Several renewable energy sources such as biomass, wind, solar, hydro and geothermal have been discussed in the literature review. Different control methods and topologies have been cited. Hence, the study elaborates on the adoptive control principles, which include the load ballast control, dummy load control, proportional integral and derivative (PID) controller system, proportional integral (PI) controller system, pulse-width modulation (PWM) control, pitch angle control, valve control, the rate of river flow at the turbine, bidirectional diffuser-augmented control and differential flatness based controller. These control operations in renewable energy power generation are mainly based on a linear control approach. In the case whereby a PI power controller system has been developed for a variable speed hydrokinetic turbine system, a DC-DC boost converter is used to keep constant DC link voltage. The input DC current is regulated to follow the optimized current reference for maximum power point operation of the turbine system. The DC link voltage is controlled to feed the current in the grid through the line side PWM inverter. The active power is regulated by q-axis current while the reactive power is regulated by d-axis current. The phase angle of utility voltage is detected using PLL (phased locked loop) in a d-q synchronous reference frame. The proposed scheme is modelled and simulated using MATLAB/ Simulink, and the results give a high quality power conversion solution for a variable speed hydrokinetic system. In the second case, whereby the differential flatness concept is applied to a controller, the idea of this concept is to generate an imaginary trajectory that will take the system from an initial condition to a desired output generating power. This control concept has the ability to resolve complex control problems such as output voltage and frequency fluctuations of renewable energy systems, while exploiting their linear properties. The results show that the generated outputs are dynamically adjusted during the voltage regulation process. The advantage of the proposed differential flatness based controller over the traditional PI control resides in the fact that decoupling is not necessary and the system is much more robust as demonstrated by the modelling and simulation studies under different operating conditions, such as changes in water flow rate

    Power Quality Improvement and Low Voltage Ride through Capability in Hybrid Wind-PV Farms Grid-Connected Using Dynamic Voltage Restorer

    Get PDF
    © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission.This paper proposes the application of a dynamic voltage restorer (DVR) to enhance the power quality and improve the low voltage ride through (LVRT) capability of a three-phase medium-voltage network connected to a hybrid distribution generation system. In this system, the photovoltaic (PV) plant and the wind turbine generator (WTG) are connected to the same point of common coupling (PCC) with a sensitive load. The WTG consists of a DFIG generator connected to the network via a step-up transformer. The PV system is connected to the PCC via a two-stage energy conversion (dc-dc converter and dc-ac inverter). This topology allows, first, the extraction of maximum power based on the incremental inductance technique. Second, it allows the connection of the PV system to the public grid through a step-up transformer. In addition, the DVR based on fuzzy logic controller is connected to the same PCC. Different fault condition scenarios are tested for improving the efficiency and the quality of the power supply and compliance with the requirements of the LVRT grid code. The results of the LVRT capability, voltage stability, active power, reactive power, injected current, and dc link voltage, speed of turbine, and power factor at the PCC are presented with and without the contribution of the DVR system.Peer reviewe
    corecore