2 research outputs found

    Design of Adaptive Switching Controller for Robotic Manipulators with Disturbance

    Get PDF
    Two adaptive switching control strategies are proposed for the trajectory tracking problem of robotic manipulator in this paper. The first scheme is designed for the supremum of the bounded disturbance for robot manipulator being known; while the supremum is not known, the second scheme is proposed. Each proposed scheme consists of an adaptive switching law and a PD controller. Based on the Lyapunov stability theorem, it is shown that two new schemes can guarantee tracking performance of the robotic manipulator and be adapted to the alternating unknown loads. Simulations for two-link robotic manipulator are carried out and show that the two schemes can avoid the overlarge input torque, and the feasibility and validity of the proposed control schemes are proved

    Multiobjective Trajectory Optimization and Adaptive Backstepping Control for Rubber Unstacking Robot Based on RFWNN Method

    Get PDF
    Multiobjective trajectory optimization and adaptive backstepping control method based on recursive fuzzy wavelet neural network (RFWNN) are proposed to solve the problem of dynamic modeling uncertainties and strong external disturbance of the rubber unstacking robot during recycling process. First, according to the rubber viscoelastic properties, the Hunt-Crossley nonlinear model is used to construct the robot dynamics model. Then, combined with the dynamic model and the recycling process characteristics, the multiobjective trajectory optimization of the rubber unstacking robot is carried out for the operational efficiency, the running trajectory smoothness, and the energy consumption. Based on the trajectory optimization results, the adaptive backstepping control method based on RFWNN is adopted. The RFWNN method is applied in the main controller to cope with time-varying uncertainties of the robot dynamic system. Simultaneously, an adaptive robust control law is developed to eliminate inevitable approximation errors and unknown disturbances and relax the requirement for prior knowledge of the controlled system. Finally, the validity of the proposed control strategy is verified by experiment
    corecore