1,056 research outputs found

    IMCAD: Computer Aided System for Breast Masses Detection based on Immune Recognition

    Get PDF
    Computer Aided Detection (CAD) systems are very important tools which help radiologists as a second reader in detecting early breast cancer in an efficient way, specially on screening mammograms. One of the challenging problems is the detection of masses, which are powerful signs of cancer, because of their poor apperance on mammograms. This paper investigates an automatic CAD for detection of breast masses in screening mammograms based on fuzzy segmentation and a bio-inspired method for pattern recognition: Artificial Immune Recognition System. The proposed approach is applied to real clinical images from the full field digital mammographic database: Inbreast. In order to validate our proposition, we propose the Receiver Operating Characteristic Curve as an analyzer of our IMCAD classifier system, which achieves a good area under curve, with a sensitivity of 100% and a specificity of 95%. The recognition system based on artificial immunity has shown its efficiency on recognizing masses from a very restricted set of training regions

    Breast Density Estimation and Micro-Calcification Classification

    Get PDF

    Breast cancer diagnosis: a survey of pre-processing, segmentation, feature extraction and classification

    Get PDF
    Machine learning methods have been an interesting method in the field of medical for many years, and they have achieved successful results in various fields of medical science. This paper examines the effects of using machine learning algorithms in the diagnosis and classification of breast cancer from mammography imaging data. Cancer diagnosis is the identification of images as cancer or non-cancer, and this involves image preprocessing, feature extraction, classification, and performance analysis. This article studied 93 different references mentioned in the previous years in the field of processing and tries to find an effective way to diagnose and classify breast cancer. Based on the results of this research, it can be concluded that most of today’s successful methods focus on the use of deep learning methods. Finding a new method requires an overview of existing methods in the field of deep learning methods in order to make a comparison and case study

    A review on automatic mammographic density and parenchymal segmentation

    Get PDF
    Breast cancer is the most frequently diagnosed cancer in women. However, the exact cause(s) of breast cancer still remains unknown. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective way to tackle breast cancer. There are more than 70 common genetic susceptibility factors included in the current non-image-based risk prediction models (e.g., the Gail and the Tyrer-Cuzick models). Image-based risk factors, such as mammographic densities and parenchymal patterns, have been established as biomarkers but have not been fully incorporated in the risk prediction models used for risk stratification in screening and/or measuring responsiveness to preventive approaches. Within computer aided mammography, automatic mammographic tissue segmentation methods have been developed for estimation of breast tissue composition to facilitate mammographic risk assessment. This paper presents a comprehensive review of automatic mammographic tissue segmentation methodologies developed over the past two decades and the evidence for risk assessment/density classification using segmentation. The aim of this review is to analyse how engineering advances have progressed and the impact automatic mammographic tissue segmentation has in a clinical environment, as well as to understand the current research gaps with respect to the incorporation of image-based risk factors in non-image-based risk prediction models
    corecore