34 research outputs found

    Adversarial Robustness and Robust Meta-Learning for Neural Networks

    Get PDF
    Despite the overwhelming success of neural networks for pattern recognition, these models behave categorically different from humans. Adversarial examples, small perturbations which are often undetectable to the human eye, easily fool neural networks, demonstrating that neural networks lack the robustness of human classifiers. This thesis comprises a sequence of three parts. First, we motivate the study of defense against adversarial examples with a case study on algorithmic trading in which robustness may be critical for security reasons. Second, we develop methods for hardening neural networks against an adversary, especially in the low-data regime, where meta-learning methods achieve state-of-the-art results. Finally, we discuss several properties of the neural network models we use. These properties are of interest beyond robustness to adversarial examples, and they extend to the broad setting of deep learning

    Generative Methods, Meta-learning, and Meta-heuristics for Robust Cyber Defense

    Get PDF
    Cyberspace is the digital communications network that supports the internet of battlefield things (IoBT), the model by which defense-centric sensors, computers, actuators and humans are digitally connected. A secure IoBT infrastructure facilitates real time implementation of the observe, orient, decide, act (OODA) loop across distributed subsystems. Successful hacking efforts by cyber criminals and strategic adversaries suggest that cyber systems such as the IoBT are not secure. Three lines of effort demonstrate a path towards a more robust IoBT. First, a baseline data set of enterprise cyber network traffic was collected and modelled with generative methods allowing the generation of realistic, synthetic cyber data. Next, adversarial examples of cyber packets were algorithmically crafted to fool network intrusion detection systems while maintaining packet functionality. Finally, a framework is presented that uses meta-learning to combine the predictive power of various weak models. This resulted in a meta-model that outperforms all baseline classifiers with respect to overall accuracy of packets, and adversarial example detection rate. The National Defense Strategy underscores cybersecurity as an imperative to defend the homeland and maintain a military advantage in the information age. This research provides both academic perspective and applied techniques to to further the cybersecurity posture of the Department of Defense into the information age

    A comprehensive survey on deep active learning and its applications in medical image analysis

    Full text link
    Deep learning has achieved widespread success in medical image analysis, leading to an increasing demand for large-scale expert-annotated medical image datasets. Yet, the high cost of annotating medical images severely hampers the development of deep learning in this field. To reduce annotation costs, active learning aims to select the most informative samples for annotation and train high-performance models with as few labeled samples as possible. In this survey, we review the core methods of active learning, including the evaluation of informativeness and sampling strategy. For the first time, we provide a detailed summary of the integration of active learning with other label-efficient techniques, such as semi-supervised, self-supervised learning, and so on. Additionally, we also highlight active learning works that are specifically tailored to medical image analysis. In the end, we offer our perspectives on the future trends and challenges of active learning and its applications in medical image analysis.Comment: Paper List on Github: https://github.com/LightersWang/Awesome-Active-Learning-for-Medical-Image-Analysi

    Taken out of context: On measuring situational awareness in LLMs

    Full text link
    We aim to better understand the emergence of `situational awareness' in large language models (LLMs). A model is situationally aware if it's aware that it's a model and can recognize whether it's currently in testing or deployment. Today's LLMs are tested for safety and alignment before they are deployed. An LLM could exploit situational awareness to achieve a high score on safety tests, while taking harmful actions after deployment. Situational awareness may emerge unexpectedly as a byproduct of model scaling. One way to better foresee this emergence is to run scaling experiments on abilities necessary for situational awareness. As such an ability, we propose `out-of-context reasoning' (in contrast to in-context learning). We study out-of-context reasoning experimentally. First, we finetune an LLM on a description of a test while providing no examples or demonstrations. At test time, we assess whether the model can pass the test. To our surprise, we find that LLMs succeed on this out-of-context reasoning task. Their success is sensitive to the training setup and only works when we apply data augmentation. For both GPT-3 and LLaMA-1, performance improves with model size. These findings offer a foundation for further empirical study, towards predicting and potentially controlling the emergence of situational awareness in LLMs. Code is available at: https://github.com/AsaCooperStickland/situational-awareness-evals

    Few-shot learning for fine-grained emotion recognition using physiological signals

    Get PDF
    Fine-grained emotion recognition can model the temporal dynamics of emotions. It is temporally more precise when compared to predicting one emotion for activities (e.g., video clip watching). Previous works require large amounts of continuously annotated data to train an accurate recognition model. However, the experiments to collect large amounts of continuously annotated physiological signals are costly and time-consuming. To overcome this challenge, we propose a few-shot learning algorithm EmoDSN which can rapidly converge on a small amount of training data (typically < 10 samples per class (i.e., < 10 shot)) for fine-grained emotion recognition. EmoDSN recognizes fine-grained valence and arousal (V-A) labels by maximizing the distance metric between signal segments with different V-A labels. We tested EmoDSN on three different datasets, CASE, MERCA and CEAP-360VR, collected in three different environments: desktop, mobile and HMD-based virtual reality, respectively. The results from our experiments show that EmoDSN achieves promising results for both one-dimension binary (high/low V-A, 1D-2C) and two-dimensional 5-class (four quadrants of V-A space + neutral, 2D-5C) classification. We get an averaged accuracy of 76.04%, 76.62% and 57.62% for 1D-2C valence, 1D-2C arousal and 2D-5C respectively by using only 5 shot of training data. We also find that EmoDSN can achieve better recognition results trained with fewer annotated samples if we select training samples from the changing points of emotion and the ending moments of video watching

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues
    corecore