12,055 research outputs found

    Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

    Full text link
    Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals of tens of milliseconds. Low-power wireless technology is preferred for its low cost, small form factor, and flexibility, especially if the devices support multi-hop communication. So far, however, feedback control over wireless multi-hop networks has only been shown for update intervals on the order of seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance (e.g., jitter and message loss), and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. Using experiments on a cyber-physical testbed with 20 wireless nodes and multiple cart-pole systems, we are the first to demonstrate and evaluate feedback control and coordination over wireless multi-hop networks for update intervals of 20 to 50 milliseconds.Comment: Accepted final version to appear in: 10th ACM/IEEE International Conference on Cyber-Physical Systems (with CPS-IoT Week 2019) (ICCPS '19), April 16--18, 2019, Montreal, QC, Canad

    Fuzzy Feedback Scheduling of Resource-Constrained Embedded Control Systems

    Full text link
    The quality of control (QoC) of a resource-constrained embedded control system may be jeopardized in dynamic environments with variable workload. This gives rise to the increasing demand of co-design of control and scheduling. To deal with uncertainties in resource availability, a fuzzy feedback scheduling (FFS) scheme is proposed in this paper. Within the framework of feedback scheduling, the sampling periods of control loops are dynamically adjusted using the fuzzy control technique. The feedback scheduler provides QoC guarantees in dynamic environments through maintaining the CPU utilization at a desired level. The framework and design methodology of the proposed FFS scheme are described in detail. A simplified mobile robot target tracking system is investigated as a case study to demonstrate the effectiveness of the proposed FFS scheme. The scheme is independent of task execution times, robust to measurement noises, and easy to implement, while incurring only a small overhead.Comment: To appear in International Journal of Innovative Computing, Information and Contro
    • …
    corecore