488 research outputs found

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Robust fault detection for networked systems with communication delay and data missing

    Get PDF
    n this paper, the robust fault detection problem is investigated for a class of discrete-time networked systems with unknown input and multiple state delays. A novel measurement model is utilized to represent both the random measurement delays and the stochastic data missing phenomenon, which typically result from the limited capacity of the communication networks. The network status is assumed to vary in a Markovian fashion and its transition probability matrix is uncertain but resides in a known convex set of a polytopic type. The main purpose of this paper is to design a robust fault detection filter such that, for all unknown inputs, possible parameter uncertainties and incomplete measurements, the error between the residual signal and the fault signal is made as small as possible. By casting the addressed robust fault detection problem into an auxiliary robust H∞ filtering problem of a certain Markovian jumping system, a sufficient condition for the existence of the desired robust fault detection filter is established in terms of linear matrix inequalities. A numerical example is provided to illustrate the effectiveness and applicability of the proposed technique

    Adaptive Backstepping Controller Design for Stochastic Jump Systems

    Get PDF
    In this technical note, we improve the results in a paper by Shi et al., in which problems of stochastic stability and sliding mode control for a class of linear continuous-time systems with stochastic jumps were considered. However, the system considered is switching stochastically between different subsystems, the dynamics of the jump system can not stay on each sliding surface of subsystems forever, therefore, it is difficult to determine whether the closed-loop system is stochastically stable. In this technical note, the backstepping techniques are adopted to overcome the problem in a paper by Shi et al.. The resulting closed-loop system is bounded in probability. It has been shown that the adaptive control problem for the Markovian jump systems is solvable if a set of coupled linear matrix inequalities (LMIs) have solutions. A numerical example is given to show the potential of the proposed techniques

    Robust Fault Detection of Switched Linear Systems with State Delays

    Get PDF
    This correspondence deals with the problem of robust fault detection for discrete-time switched systems with state delays under an arbitrary switching signal. The fault detection filter is used as the residual generator, in which the filter parameters are dependent on the system mode. Attention is focused on designing the robust fault detection filter such that, for unknown inputs, control inputs, and model uncertainties, the estimation error between the residuals and faults is minimized. The problem of robust fault detection is converted into an H infin-filtering problem. By a switched Lyapunov functional approach, a sufficient condition for the solvability of this problem is established in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of the proposed method

    Parity space-based fault detection for Markovian jump systems

    Get PDF
    This article deals with problems of parity space-based fault detection for a class of discrete-time linear Markovian jump systems. A new algorithm is firstly introduced to reduce the computation of mode-dependent redundancy relation parameter matrices. Different from the case of linear time invariant systems, the parity space-based residual generator for a Markovian jump system cannot be designed off-line because it depends on the history of system modes in the last finite steps. In order to overcome this difficulty, a finite set of parity matrices is pre-designed applying a unified approach to linear time invariant systems. Then the on-line residual generation can be easily implemented. Moreover, the problem of residual evaluation is also considered which includes the determination of a residual evaluation function and a threshold. Finally, a numerical example is given to illustrate the effectiveness of the proposed method

    Fault detection for markovian jump systems with sensor saturations and randomly varying nonlinearities

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEE.This paper addresses the fault detection problem for discrete-time Markovian jump systems with incomplete knowledge of transition probabilities, randomly varying nonlinearities and sensor saturations. For the Markovian mode jumping, the transition probability matrix is allowed to have partially unknown entries, while the cases with completely known or completely unknown transition probabilities are also investigated as two special cases. The randomly varying nonlinearities and the sensor saturations are introduced to reflect the limited capacity of the communication networks resulting from the noisy environment, probabilistic communication failures, measurements of limited amplitudes, etc. Two energy norm indices are used for the fault detection problem in order to account for, respectively, the restraint of disturbance and the sensitivity of faults. The purpose of the problem addressed is to design an optimized fault detection filter such that 1) the fault detection dynamics is stochastically stable; 2) the effect from the exogenous disturbance on the residual is attenuated with respect to a minimized H∞-norm; and 3) the sensitivity of the residual to the fault is enhanced by means of a maximized H∞-norm. The characterization of the gains of the desired fault detection filters is derived in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programme method. Finally, a simulation example is employed to show the effectiveness of the fault detection filtering scheme proposed in this paper.This work was supported in part by the National 973 Project under Grant 2009CB320600, the National Natural Science Foundation of China under Grants 61028008, 61134009, 60825303, 90916005 and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Necessary and sufficient conditions for analysis and synthesis of markov jump linear systems with incomplete transition descriptions

    Get PDF
    This technical note is concerned with exploring a new approach for the analysis and synthesis for Markov jump linear systems with incomplete transition descriptions. In the study, not all the elements of the transition rate matrices (TRMs) in continuous-time domain, or transition probability matrices (TPMs) in discrete-time domain are assumed to be known. By fully considering the properties of the TRMs and TPMs, and the convexity of the uncertain domains, necessary and sufficient criteria of stability and stabilization are obtained in both continuous and discrete time. Numerical examples are used to illustrate the results. © 2006 IEEE.published_or_final_versio

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    A novel approach to fault detection for fuzzy stochastic systems with nonhomogeneous processes

    Get PDF
    In this paper, we consider a class of fuzzy stochastic systems with nonhomogeneous jump processes. Our focus is on the design of a fuzzy fault detection filter that is sensitive to faults but robust against unknown inputs. Furthermore, the error filtering system is stochastically stable. With reference to an H1 performance index and a new performance index, sufficient conditions to ensure the existence of a fuzzy robust fault detection filter are derived. Simulation studies are carried out, showing that the proposed fuzzy robust FD filter can rapidly detect the faults correctly
    corecore