84 research outputs found

    Generative Adversarial Network and Its Application in Aerial Vehicle Detection and Biometric Identification System

    Get PDF
    In recent years, generative adversarial networks (GANs) have shown great potential in advancing the state-of-the-art in many areas of computer vision, most notably in image synthesis and manipulation tasks. GAN is a generative model which simultaneously trains a generator and a discriminator in an adversarial manner to produce real-looking synthetic data by capturing the underlying data distribution. Due to its powerful ability to generate high-quality and visually pleasingresults, we apply it to super-resolution and image-to-image translation techniques to address vehicle detection in low-resolution aerial images and cross-spectral cross-resolution iris recognition. First, we develop a Multi-scale GAN (MsGAN) with multiple intermediate outputs, which progressively learns the details and features of the high-resolution aerial images at different scales. Then the upscaled super-resolved aerial images are fed to a You Only Look Once-version 3 (YOLO-v3) object detector and the detection loss is jointly optimized along with a super-resolution loss to emphasize target vehicles sensitive to the super-resolution process. There is another problem that remains unsolved when detection takes place at night or in a dark environment, which requires an IR detector. Training such a detector needs a lot of infrared (IR) images. To address these challenges, we develop a GAN-based joint cross-modal super-resolution framework where low-resolution (LR) IR images are translated and super-resolved to high-resolution (HR) visible (VIS) images before applying detection. This approach significantly improves the accuracy of aerial vehicle detection by leveraging the benefits of super-resolution techniques in a cross-modal domain. Second, to increase the performance and reliability of deep learning-based biometric identification systems, we focus on developing conditional GAN (cGAN) based cross-spectral cross-resolution iris recognition and offer two different frameworks. The first approach trains a cGAN to jointly translate and super-resolve LR near-infrared (NIR) iris images to HR VIS iris images to perform cross-spectral cross-resolution iris matching to the same resolution and within the same spectrum. In the second approach, we design a coupled GAN (cpGAN) architecture to project both VIS and NIR iris images into a low-dimensional embedding domain. The goal of this architecture is to ensure maximum pairwise similarity between the feature vectors from the two iris modalities of the same subject. We have also proposed a pose attention-guided coupled profile-to-frontal face recognition network to learn discriminative and pose-invariant features in an embedding subspace. To show that the feature vectors learned by this deep subspace can be used for other tasks beyond recognition, we implement a GAN architecture which is able to reconstruct a frontal face from its corresponding profile face. This capability can be used in various face analysis tasks, such as emotion detection and expression tracking, where having a frontal face image can improve accuracy and reliability. Overall, our research works have shown its efficacy by achieving new state-of-the-art results through extensive experiments on publicly available datasets reported in the literature

    Robots learn to behave: improving human-robot collaboration in flexible manufacturing applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Visual Pretraining on Large-Scale Image Datasets

    Get PDF
    This thesis focuses on large-scale visual pretraining in computer vision and addresses various limitations of previous approaches. It introduces a novel technique called Relative Contrastive Loss (RCL) to learn feature representations that encompass real-world semantic variations while respecting positive-negative relativeness. The thesis also presents UniVCL, a unified framework for unsupervised visual contrastive learning methods, leveraging a graph convolutional network (GCN) layer for improved object recognition accuracy. Additionally, the thesis explores the transferability gap between unsupervised and supervised pretraining, emphasizing the role of the multilayer perceptron (MLP) projector in enhancing transfer performance. HumanBench, a comprehensive benchmark for human-centric downstream tasks, is proposed, and a pretraining method called PATH is introduced to learn knowledge in human bodies. The findings confirm the effectiveness of the proposed methods in enhancing the practicality and performance of large-scale visual pretraining

    Machine Learning and Its Application to Reacting Flows

    Get PDF
    This open access book introduces and explains machine learning (ML) algorithms and techniques developed for statistical inferences on a complex process or system and their applications to simulations of chemically reacting turbulent flows. These two fields, ML and turbulent combustion, have large body of work and knowledge on their own, and this book brings them together and explain the complexities and challenges involved in applying ML techniques to simulate and study reacting flows. This is important as to the world’s total primary energy supply (TPES), since more than 90% of this supply is through combustion technologies and the non-negligible effects of combustion on environment. Although alternative technologies based on renewable energies are coming up, their shares for the TPES is are less than 5% currently and one needs a complete paradigm shift to replace combustion sources. Whether this is practical or not is entirely a different question, and an answer to this question depends on the respondent. However, a pragmatic analysis suggests that the combustion share to TPES is likely to be more than 70% even by 2070. Hence, it will be prudent to take advantage of ML techniques to improve combustion sciences and technologies so that efficient and “greener” combustion systems that are friendlier to the environment can be designed. The book covers the current state of the art in these two topics and outlines the challenges involved, merits and drawbacks of using ML for turbulent combustion simulations including avenues which can be explored to overcome the challenges. The required mathematical equations and backgrounds are discussed with ample references for readers to find further detail if they wish. This book is unique since there is not any book with similar coverage of topics, ranging from big data analysis and machine learning algorithm to their applications for combustion science and system design for energy generation

    Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics

    Full text link
    Three recent breakthroughs due to AI in arts and science serve as motivation: An award winning digital image, protein folding, fast matrix multiplication. Many recent developments in artificial neural networks, particularly deep learning (DL), applied and relevant to computational mechanics (solid, fluids, finite-element technology) are reviewed in detail. Both hybrid and pure machine learning (ML) methods are discussed. Hybrid methods combine traditional PDE discretizations with ML methods either (1) to help model complex nonlinear constitutive relations, (2) to nonlinearly reduce the model order for efficient simulation (turbulence), or (3) to accelerate the simulation by predicting certain components in the traditional integration methods. Here, methods (1) and (2) relied on Long-Short-Term Memory (LSTM) architecture, with method (3) relying on convolutional neural networks. Pure ML methods to solve (nonlinear) PDEs are represented by Physics-Informed Neural network (PINN) methods, which could be combined with attention mechanism to address discontinuous solutions. Both LSTM and attention architectures, together with modern and generalized classic optimizers to include stochasticity for DL networks, are extensively reviewed. Kernel machines, including Gaussian processes, are provided to sufficient depth for more advanced works such as shallow networks with infinite width. Not only addressing experts, readers are assumed familiar with computational mechanics, but not with DL, whose concepts and applications are built up from the basics, aiming at bringing first-time learners quickly to the forefront of research. History and limitations of AI are recounted and discussed, with particular attention at pointing out misstatements or misconceptions of the classics, even in well-known references. Positioning and pointing control of a large-deformable beam is given as an example.Comment: 275 pages, 158 figures. Appeared online on 2023.03.01 at CMES-Computer Modeling in Engineering & Science

    Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems

    Full text link
    Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science

    A Chronological Survey of Theoretical Advancements in Generative Adversarial Networks for Computer Vision

    Full text link
    Generative Adversarial Networks (GANs) have been workhorse generative models for last many years, especially in the research field of computer vision. Accordingly, there have been many significant advancements in the theory and application of GAN models, which are notoriously hard to train, but produce good results if trained well. There have been many a surveys on GANs, organizing the vast GAN literature from various focus and perspectives. However, none of the surveys brings out the important chronological aspect: how the multiple challenges of employing GAN models were solved one-by-one over time, across multiple landmark research works. This survey intends to bridge that gap and present some of the landmark research works on the theory and application of GANs, in chronological order

    Learning Identifiable Representations: Independent Influences and Multiple Views

    Get PDF
    Intelligent systems, whether biological or artificial, perceive unstructured information from the world around them: deep neural networks designed for object recognition receive collections of pixels as inputs; living beings capture visual stimuli through photoreceptors that convert incoming light into electrical signals. Sophisticated signal processing is required to extract meaningful features (e.g., the position, dimension, and colour of objects in an image) from these inputs: this motivates the field of representation learning. But what features should be deemed meaningful, and how to learn them? We will approach these questions based on two metaphors. The first one is the cocktail-party problem, where a number of conversations happen in parallel in a room, and the task is to recover (or separate) the voices of the individual speakers from recorded mixtures—also termed blind source separation. The second one is what we call the independent-listeners problem: given two listeners in front of some loudspeakers, the question is whether, when processing what they hear, they will make the same information explicit, identifying similar constitutive elements. The notion of identifiability is crucial when studying these problems, as it specifies suitable technical assumptions under which representations are uniquely determined, up to tolerable ambiguities like latent source reordering. A key result of this theory is that, when the mixing is nonlinear, the model is provably non-identifiable. A first question is, therefore, under what additional assumptions (ideally as mild as possible) the problem becomes identifiable; a second one is, what algorithms can be used to estimate the model. The contributions presented in this thesis address these questions and revolve around two main principles. The first principle is to learn representation where the latent components influence the observations independently. Here the term “independently” is used in a non-statistical sense—which can be loosely thought of as absence of fine-tuning between distinct elements of a generative process. The second principle is that representations can be learned from paired observations or views, where mixtures of the same latent variables are observed, and they (or a subset thereof) are perturbed in one of the views—also termed multi-view setting. I will present work characterizing these two problem settings, studying their identifiability and proposing suitable estimation algorithms. Moreover, I will discuss how the success of popular representation learning methods may be explained in terms of the principles above and describe an application of the second principle to the statistical analysis of group studies in neuroimaging
    • …
    corecore