244 research outputs found

    On Nonrigid Shape Similarity and Correspondence

    Full text link
    An important operation in geometry processing is finding the correspondences between pairs of shapes. The Gromov-Hausdorff distance, a measure of dissimilarity between metric spaces, has been found to be highly useful for nonrigid shape comparison. Here, we explore the applicability of related shape similarity measures to the problem of shape correspondence, adopting spectral type distances. We propose to evaluate the spectral kernel distance, the spectral embedding distance and the novel spectral quasi-conformal distance, comparing the manifolds from different viewpoints. By matching the shapes in the spectral domain, important attributes of surface structure are being aligned. For the purpose of testing our ideas, we introduce a fully automatic framework for finding intrinsic correspondence between two shapes. The proposed method achieves state-of-the-art results on the Princeton isometric shape matching protocol applied, as usual, to the TOSCA and SCAPE benchmarks

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    IMD-Net: A deep learning-based icosahedral mesh denoising network

    Get PDF
    In this work, we propose a novel denoising technique, the icosahedral mesh denoising network (IMD-Net) for closed genus-0 meshes. IMD-Net is a deep neural network that produces a denoised mesh in a single end-to-end pass, preserving and emphasizing natural object features in the process. A preprocessing step, exploiting the homeomorphism between genus-0 mesh and sphere, remeshes an irregular mesh using the regular mesh structure of a frequency subdivided icosahedron. Enabled by gauge equivariant convolutional layers arranged in a residual U-net, IMD-Net denoises the remeshing invariant to global mesh transformations as well as local feature constellations and orientations, doing so with a computational complexity of traditional conv2D kernel. The network is equipped with carefully crafted loss function that leverages differences between positional, normal and curvature fields of target and noisy mesh in a numerically stable fashion. In a first, two large shape datasets commonly used in related fields, ABC and ShapeNetCore , are introduced to evaluate mesh denoising. IMD-Net’s competitiveness with existing state-of-the-art techniques is established using both metric evaluations and visual inspection of denoised models. Our code is publicly available at https://github.com/jjabo/IMD-Net.DFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berli

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Super-Resolution Approaches for Depth Video Enhancement

    Get PDF
    Sensing using 3D technologies has seen a revolution in the past years where cost-effective depth sensors are today part of accessible consumer electronics. Their ability in directly capturing depth videos in real-time has opened tremendous possibilities for multiple applications in computer vision. These sensors, however, have major shortcomings due to their high noise contamination, including missing and jagged measurements, and their low spatial resolutions. In order to extract detailed 3D features from this type of data, a dedicated data enhancement is required. We propose a generic depth multi–frame super–resolution framework that addresses the limitations of state-of-theart depth enhancement approaches. The proposed framework doesnot need any additional hardware or coupling with different modalities. It is based on a new data model that uses densely upsampled low resolution observations. This results in a robust median initial estimation, further refined by a deblurring operation using a bilateraltotal variation as the regularization term. The upsampling operation ensures a systematic improvement in the registration accuracy. This is explored in different scenarios based on the motions involved in the depth video. For the general and most challenging case of objects deforming non-rigidly in full 3D, we propose a recursive dynamic multi–frame super-resolution algorithm where the relative local 3D motions between consecutive frames are directly accounted for. We rely on the assumption that these 3D motions can be decoupled into lateral motions and radial displacements. This allows to perform a simple local per–pixel tracking where both depth measurements and deformations are optimized. As compared to alternative approaches, the results show a clear improvement in reconstruction accuracy and in robustness to noise, to relative large non-rigid deformations, and to topological changes. Moreover, the proposed approach, implemented on a CPU, is shown to be computationally efficient and working in real-time

    The 6th Conference of PhD Students in Computer Science

    Get PDF

    Mathematical modeling and visualization of functional neuroimages

    Get PDF
    • …
    corecore