25 research outputs found

    Nonlinear Control and Estimation with General Performance Criteria

    Get PDF
    This dissertation is concerned with nonlinear systems control and estimation with general performance criteria. The purpose of this work is to propose general design methods to provide systematic and effective design frameworks for nonlinear system control and estimation problems. First, novel State Dependent Linear Matrix Inequality control approach is proposed, which is optimally robust for model uncertainties and resilient against control feedback gain perturbations in achieving general performance criteria to secure quadratic optimality with inherent asymptotic stability property together with quadratic dissipative type of disturbance reduction. By solving a state dependent linear matrix inequality at each time step, the sufficient condition for the control solution can be found which satisfies the general performance criteria. The results of this dissertation unify existing results on nonlinear quadratic regulator, Hinfinity and positive real control. Secondly, an H2-Hinfinity State Dependent Riccati Equation controller is proposed in this dissertation. By solving the generalized State Dependent Riccati Equation, the optimal control solution not only achieves the optimal quadratic regulation performance, but also has the capability of external disturbance reduction. Numerically efficient algorithms are developed to facilitate effective computation. Thirdly, a robust multi-criteria optimal fuzzy control of nonlinear systems is proposed. To improve the optimality and robustness, optimal fuzzy control is proposed for nonlinear systems with general performance criteria. The Takagi-Sugeno fuzzy model is used as an effective tool to control nonlinear systems through fuzzy rule models. General performance criteria have been used to design the controller and the relative weighting matrices of these criteria can be achieved by choosing different coefficient matrices. The optimal control can be achieved by solving the LMI at each time step. Lastly, since any type of controller and observer is subject to actuator failures and sensors failures respectively, novel robust and resilient controllers and estimators are also proposed for nonlinear stochastic systems to address these failure problems. The effectiveness of the proposed control and estimation techniques are demonstrated by simulations of nonlinear systems: the inverted pendulum on a cart and the Lorenz chaotic system, respectively

    Design and analysis of robust controllers for directional drilling tools

    Get PDF
    Directional drilling is a very important tool for the development of oil and gas deposits. Attitude control which enables directional drilling for the efficient placement of the directional drilling tools in petroleum producing zones is reviewed along with the various engineering requirements or constraints. This thesis explores a multivariable attitude governing plant model as formulated in Panchal et al. (2010) which is used for developing robust control techniques. An inherent input and measurement delay which accounts for the plant's dead-time is included in the design of the controllers. A Smith Predictor controller is developed for reducing the effect of this dead-time. The developed controllers are compared for performance and robustness using structured singular value analysis and also for their performance indicated by the transient response of the closed loop models. Results for the transient non-linear simulation of the proposed controllers are also presented. The results obtained indicate that the objectives are satisfactorily achieved

    H-Infinity Control for Pitch-Roll AR.Drone

    Get PDF
    This paper describes the design and implementation of H-infinity controller applied to the AR.Drone to follow a given trajectory. The trajectory will be achieved by using two control signals, pitch and roll. Pitch and roll of the AR.Drone models are obtained by assuming that the transfer function of internal control for pitch and roll is the second order system. Two schemes of H-infinity controller designed for pitch and roll. H-infinity control for x-position has exogenous input of the x-reference, xref, control input of pitch value, exogenous output in the form of x-position and process output as error x. While H-infinity control for y-position has exogenous input of y-reference, yref, control input in the form of roll value, exogenous output of y-position and process output as error y. The results of simulation and implementation show that drone can follow multiple references of trajectories given

    Robust fractional-order fast terminal sliding mode control with fixed-time reaching law for high-performance nanopositioning

    Get PDF
    Open Access via the Wiley Agreement ACKNOWLEDGEMENTS This work is supported by the China Scholarship Council under Grant No. 201908410107 and by the National Natural Science Foundation of China under Grant No. 51505133. The authors also thank the anonymous reviewers for their insightful and constructive comments.Peer reviewedPublisher PD

    Load Disturbance Torque Estimation for Motor Drive Systems with Application to Electric Power Steering System

    Get PDF
    Motors are widely used in industries due to its ability to provide high mechanical power in speed and torque applications. Its flexibility to control and quick response are other reasons for its widespread use. Disturbance torque acting on the motor shaft is a major factor which affects the motor performance. Considering the load disturbance torque while designing the control for the motor makes the system more robust to load changes. Most disturbance observers are designed for steady state load conditions. The observer designed here considers a general case making no assumptions about the load torque dynamics. The observer design methods to be used under different disturbance conditions are also discussed and the performances compared. The designed observer is tested in a Hardware-in-Loop (HIL) setup for different load conditions. A motor load torque estimation based Fault Tolerant Control (FTC) is then designed for an Electric Power Steering (EPS) system

    Computationalcost Reduction of Robust Controllers Foractive Magnetic Bearing Systems

    Get PDF
    This work developed strategies for reducing the computational complexity of implementing robust controllers for active magnetic bearing (AMB) systems and investigated the use of a novel add-on controller for gyroscopic effect compensation to improve achievable performance with robust controllers. AMB systems are multi-input multi-output (MIMO) systems with many interacting mechanisms that needs to fulfill conflicting performance criteria. That is why robust control techniques are a perfect application for AMB systems as they provide systematic methods to address both robustness and performance objectives. However, robust control techniques generally result in high order controllers that require high-end control hardware for implementation. Such controllers are not desirable by industrial AMB vendors since their hardware is based on embedded systems with limited bandwidths. That is why the computational cost is a major obstacle towards industry adaptation of robust controllers. Two novel strategies are developed to reduce the computational complexity of singlerate robust controllers while preserving robust performance. The first strategy identifies a dual-rate configuration of the controller for implementation. The selection of the dualrate configuration uses the worst-case plant analysis and a novel approach that identifies the largest tolerable perturbations to the controller. The second strategy aims to redesign iv the controller by identifying and removing negligible channels in the context of robust performance via the largest tolerable perturbations to the controller. The developed methods are demonstrated both in simulation and experiment using three different AMB systems, where significant computational savings are achieved without degrading the performance. To improve the achievable performance with robust controllers, a novel add-on controller is developed to compensate the gyroscopic effects in flexible rotor-AMB systems via modal feedback control. The compensation allows for relaxing the robustness requirements in the control problem formulation, potentially enabling better performance. The effectiveness of the developed add-on controller is demonstrated experimentally on two AMB systems with different rotor configurations. The effects of the presence of the add-on controller on the performance controller design is investigated for one of the AMB systems. Slight performance improvements are observed at the cost of increased power consumption and increased computational complexity

    Design and verification of Guidance, Navigation and Control systems for space applications

    Get PDF
    In the last decades, systems have strongly increased their complexity in terms of number of functions that can be performed and quantity of relationships between functions and hardware as well as interactions of elements and disciplines concurring to the definition of the system. The growing complexity remarks the importance of defining methods and tools that improve the design, verification and validation of the system process: effectiveness and costs reduction without loss of confidence in the final product are the objectives that have to be pursued. Within the System Engineering context, the modern Model and Simulation based approach seems to be a promising strategy to meet the goals, because it reduces the wasted resources with respect to the traditional methods, saving money and tedious works. Model Based System Engineering (MBSE) starts from the idea that it is possible at any moment to verify, through simulation sessions and according to the phase of the life cycle, the feasibility, the capabilities and the performances of the system. Simulation is used during the engineering process and can be classified from fully numerical (i.e. all the equipment and conditions are reproduced as virtual model) to fully integrated hardware simulation (where the system is represented by real hardware and software modules in their operational environment). Within this range of simulations, a few important stages can be defined: algorithm in the loop (AIL), software in the loop (SIL), controller in the loop (CIL), hardware in the loop (HIL), and hybrid configurations among those. The research activity, in which this thesis is inserted, aims at defining and validating an iterative methodology (based on Model and Simulation approach) in support of engineering teams and devoted to improve the effectiveness of the design and verification of a space system with particular interest in Guidance Navigation and Control (GNC) subsystem. The choice of focusing on GNC derives from the common interest and background of the groups involved in this research program (ASSET at Politecnico di Torino and AvioSpace, an EADS company). Moreover, GNC system is sufficiently complex (demanding both specialist knowledge and system engineer skills) and vital for whatever spacecraft and, last but not least the verification of its behavior is difficult on ground because strong limitations on dynamics and environment reproduction arise. Considering that the verification should be performed along the entire product life cycle, a tool and a facility, a simulator, independent from the complexity level of the test and the stage of the project, is needed. This thesis deals with the design of the simulator, called StarSim, which is the real heart of the proposed methodology. It has been entirely designed and developed from the requirements definition to the software implementation and hardware construction, up to the assembly, integration and verification of the first simulator release. In addition, the development of this technology met the modern standards on software development and project management. StarSim is a unique and self-contained platform: this feature allows to mitigate the risk of incompatibility, misunderstandings and loss of information that may arise using different software, simulation tools and facilities along the various phases. Modularity, flexibility, speed, connectivity, real time operation, fidelity with real world, ease of data management, effectiveness and congruence of the outputs with respect to the inputs are the sought-after features in the StarSim design. For every iteration of the methodology, StarSim guarantees the possibility to verify the behavior of the system under test thanks to the permanent availability of virtual models, that substitute all those elements not yet available and all the non-reproducible dynamics and environmental conditions. StarSim provides a furnished and user friendly database of models and interfaces that cover different levels of detail and fidelity, and supports the updating of the database allowing the user to create custom models (following few, simple rules). Progressively, pieces of the on board software and hardware can be introduced without stopping the process of design and verification, avoiding delays and loss of resources. StarSim has been used for the first time with the CubeSats belonging to the e-st@r program. It is an educational project carried out by students and researchers of the “CubeSat Team Polito” in which StarSim has been mainly used for the payload development, an Active Attitude Determination and Control System, but StarSim’s capabilities have also been updated to evaluate functionalities, operations and performances of the entire satellite. AIL, SIL, CIL, HIL simulations have been performed along all the phases of the project, successfully verifying a great number of functional and operational requirements. In particular, attitude determination algorithms, control laws, modes of operation have been selected and verified; software has been developed step by step and the bugs-free executable files have been loaded on the micro-controller. All the interfaces and protocols as well as data and commands handling have been verified. Actuators, logic and electrical circuits have been designed, built and tested and sensors calibration has been performed. Problems such as real time and synchronization have been solved and a complete hardware in the loop simulation test campaign both for A-ADCS standalone and for the entire satellite has been performed, verifying the satisfaction of a great number of CubeSat functional and operational requirements. The case study represents the first validation of the methodology with the first release of StarSim. It has been proven that the methodology is effective in demonstrating that improving the design and verification activities is a key point to increase the confidence level in the success of a space mission

    Approximate Gaussian Conjugacy: Parametric Recursive Filtering Under Nonlinearity, Multimodal, Uncertainty, and Constraint, and Beyond

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Frontiers of Information Technology & Electronic Engineering. The final authenticated version is available online at: https://doi.org/10.1631/FITEE.1700379Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity

    Robust state estimation for the control of flexible robotic manipulators

    Get PDF
    In this thesis, a novel robust estimation strategy for observing the system state variables of robotic manipulators with distributed flexibility is established. Motivation for the derived approach stems from the observation that lightweight, high speed, and large workspace robotic manipulators often suffer performance degradation because of inherent structural compliance. This flexibility often results in persistent residual vibration, which must be damped before useful work can resume. Inherent flexibility in robotic manipulators, then, increases cycle times and shortens the operational lives of the robots. Traditional compensation techniques, those which are commonly used for the control of rigid manipulators, can only approach a fraction of the open-loop system bandwidth without inducing significant excitation of the resonant dynamics. To improve the performance of these systems, the structural flexibility cannot simply be ignored, as it is when the links are significantly stiff and approximate rigid bodies. One thus needs a model to design a suitable compensator for the vibration, but any model developed to correct this problem will contain parametric error. And in the case of very lightly damped systems, like flexible robotic manipulators, this error can lead to instability of the control system for even small errors in system parameters. This work presents a systematic solution for the problem of robust state estimation for flexible manipulators in the presence of parametric modeling error. The solution includes: 1) a modeling strategy, 2) sensor selection and placement, and 3) a novel, multiple model estimator. Modeling of the FLASHMan flexible gantry manipulator is accomplished using a developed hybrid transfer matrix / assumed modes method (TMM/AMM) approach to determine an accurate low-order state space representation of the system dynamics. This model is utilized in a genetic algorithm optimization in determining the placement of MEMs accelerometers for robust estimation and observability of the system’s flexible state variables. The initial estimation method applied to the task of determining robust state estimates under conditions of parametric modeling error was of a sliding mode observer type. Evaluation of the method through analysis, simulations and experiments showed that the state estimates produced were inadequate. This led to the development of a novel, multiple model adaptive estimator. This estimator utilizes a bank of similarly designed sub-estimators and a selection algorithm to choose the true value from a given set of possible system parameter values as well as the correct state vector estimate. Simulation and experimental results are presented which demonstrate the applicability and effectiveness of the derived method for the task of state variable estimation for flexible robotic manipulators.Ph.D

    A Comprehensive Review of Digital Twin -- Part 1: Modeling and Twinning Enabling Technologies

    Full text link
    As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented attention because of its promise to further optimize process design, quality control, health monitoring, decision and policy making, and more, by comprehensively modeling the physical world as a group of interconnected digital models. In a two-part series of papers, we examine the fundamental role of different modeling techniques, twinning enabling technologies, and uncertainty quantification and optimization methods commonly used in digital twins. This first paper presents a thorough literature review of digital twin trends across many disciplines currently pursuing this area of research. Then, digital twin modeling and twinning enabling technologies are further analyzed by classifying them into two main categories: physical-to-virtual, and virtual-to-physical, based on the direction in which data flows. Finally, this paper provides perspectives on the trajectory of digital twin technology over the next decade, and introduces a few emerging areas of research which will likely be of great use in future digital twin research. In part two of this review, the role of uncertainty quantification and optimization are discussed, a battery digital twin is demonstrated, and more perspectives on the future of digital twin are shared
    corecore