15,586 research outputs found

    Robust Estimates of Covariance Matrices in the Large Dimensional Regime

    Full text link
    This article studies the limiting behavior of a class of robust population covariance matrix estimators, originally due to Maronna in 1976, in the regime where both the number of available samples and the population size grow large. Using tools from random matrix theory, we prove that, for sample vectors made of independent entries having some moment conditions, the difference between the sample covariance matrix and (a scaled version of) such robust estimator tends to zero in spectral norm, almost surely. This result can be applied to various statistical methods arising from random matrix theory that can be made robust without altering their first order behavior.Comment: to appear in IEEE Transactions on Information Theor

    Large Dimensional Analysis and Optimization of Robust Shrinkage Covariance Matrix Estimators

    Full text link
    This article studies two regularized robust estimators of scatter matrices proposed (and proved to be well defined) in parallel in (Chen et al., 2011) and (Pascal et al., 2013), based on Tyler's robust M-estimator (Tyler, 1987) and on Ledoit and Wolf's shrinkage covariance matrix estimator (Ledoit and Wolf, 2004). These hybrid estimators have the advantage of conveying (i) robustness to outliers or impulsive samples and (ii) small sample size adequacy to the classical sample covariance matrix estimator. We consider here the case of i.i.d. elliptical zero mean samples in the regime where both sample and population sizes are large. We demonstrate that, under this setting, the estimators under study asymptotically behave similar to well-understood random matrix models. This characterization allows us to derive optimal shrinkage strategies to estimate the population scatter matrix, improving significantly upon the empirical shrinkage method proposed in (Chen et al., 2011).Comment: Journal of Multivariate Analysi

    Robust spiked random matrices and a robust G-MUSIC estimator

    Full text link
    A class of robust estimators of scatter applied to information-plus-impulsive noise samples is studied, where the sample information matrix is assumed of low rank; this generalizes the study of (Couillet et al., 2013b) to spiked random matrix models. It is precisely shown that, as opposed to sample covariance matrices which may have asymptotically unbounded (eigen-)spectrum due to the sample impulsiveness, the robust estimator of scatter has bounded spectrum and may contain isolated eigenvalues which we fully characterize. We show that, if found beyond a certain detectability threshold, these eigenvalues allow one to perform statistical inference on the eigenvalues and eigenvectors of the information matrix. We use this result to derive new eigenvalue and eigenvector estimation procedures, which we apply in practice to the popular array processing problem of angle of arrival estimation. This gives birth to an improved algorithm based on the MUSIC method, which we refer to as robust G-MUSIC

    A Robust Statistics Approach to Minimum Variance Portfolio Optimization

    Full text link
    We study the design of portfolios under a minimum risk criterion. The performance of the optimized portfolio relies on the accuracy of the estimated covariance matrix of the portfolio asset returns. For large portfolios, the number of available market returns is often of similar order to the number of assets, so that the sample covariance matrix performs poorly as a covariance estimator. Additionally, financial market data often contain outliers which, if not correctly handled, may further corrupt the covariance estimation. We address these shortcomings by studying the performance of a hybrid covariance matrix estimator based on Tyler's robust M-estimator and on Ledoit-Wolf's shrinkage estimator while assuming samples with heavy-tailed distribution. Employing recent results from random matrix theory, we develop a consistent estimator of (a scaled version of) the realized portfolio risk, which is minimized by optimizing online the shrinkage intensity. Our portfolio optimization method is shown via simulations to outperform existing methods both for synthetic and real market data

    Performance analysis and optimal selection of large mean-variance portfolios under estimation risk

    Full text link
    We study the consistency of sample mean-variance portfolios of arbitrarily high dimension that are based on Bayesian or shrinkage estimation of the input parameters as well as weighted sampling. In an asymptotic setting where the number of assets remains comparable in magnitude to the sample size, we provide a characterization of the estimation risk by providing deterministic equivalents of the portfolio out-of-sample performance in terms of the underlying investment scenario. The previous estimates represent a means of quantifying the amount of risk underestimation and return overestimation of improved portfolio constructions beyond standard ones. Well-known for the latter, if not corrected, these deviations lead to inaccurate and overly optimistic Sharpe-based investment decisions. Our results are based on recent contributions in the field of random matrix theory. Along with the asymptotic analysis, the analytical framework allows us to find bias corrections improving on the achieved out-of-sample performance of typical portfolio constructions. Some numerical simulations validate our theoretical findings

    Regularized Block Toeplitz Covariance Matrix Estimation via Kronecker Product Expansions

    Full text link
    In this work we consider the estimation of spatio-temporal covariance matrices in the low sample non-Gaussian regime. We impose covariance structure in the form of a sum of Kronecker products decomposition (Tsiligkaridis et al. 2013, Greenewald et al. 2013) with diagonal correction (Greenewald et al.), which we refer to as DC-KronPCA, in the estimation of multiframe covariance matrices. This paper extends the approaches of (Tsiligkaridis et al.) in two directions. First, we modify the diagonally corrected method of (Greenewald et al.) to include a block Toeplitz constraint imposing temporal stationarity structure. Second, we improve the conditioning of the estimate in the very low sample regime by using Ledoit-Wolf type shrinkage regularization similar to (Chen, Hero et al. 2010). For improved robustness to heavy tailed distributions, we modify the KronPCA to incorporate robust shrinkage estimation (Chen, Hero et al. 2011). Results of numerical simulations establish benefits in terms of estimation MSE when compared to previous methods. Finally, we apply our methods to a real-world network spatio-temporal anomaly detection problem and achieve superior results.Comment: To appear at IEEE SSP 2014 4 page

    Convergence and Fluctuations of Regularized Tyler Estimators

    Full text link
    This article studies the behavior of regularized Tyler estimators (RTEs) of scatter matrices. The key advantages of these estimators are twofold. First, they guarantee by construction a good conditioning of the estimate and second, being a derivative of robust Tyler estimators, they inherit their robustness properties, notably their resilience to the presence of outliers. Nevertheless, one major problem that poses the use of RTEs in practice is represented by the question of setting the regularization parameter ρ\rho. While a high value of ρ\rho is likely to push all the eigenvalues away from zero, it comes at the cost of a larger bias with respect to the population covariance matrix. A deep understanding of the statistics of RTEs is essential to come up with appropriate choices for the regularization parameter. This is not an easy task and might be out of reach, unless one considers asymptotic regimes wherein the number of observations nn and/or their size NN increase together. First asymptotic results have recently been obtained under the assumption that NN and nn are large and commensurable. Interestingly, no results concerning the regime of nn going to infinity with NN fixed exist, even though the investigation of this assumption has usually predated the analysis of the most difficult NN and nn large case. This motivates our work. In particular, we prove in the present paper that the RTEs converge to a deterministic matrix when nn\to\infty with NN fixed, which is expressed as a function of the theoretical covariance matrix. We also derive the fluctuations of the RTEs around this deterministic matrix and establish that these fluctuations converge in distribution to a multivariate Gaussian distribution with zero mean and a covariance depending on the population covariance and the parameter ρ\rho
    corecore