3,257 research outputs found

    Geometric Active Disturbance Rejection Control for Autonomous Rotorcraft in Complex Atmospheric Environment

    Get PDF
    This dissertation presents several novel robust tracking control schemes of rotorcraft unmanned aerial vehicles under realistic atmospheric turbulence. To achieve fast converging and stable performance of the rotorcraft control scheme, a new H\ {o}lder-continuous differentiator, similar to the super-twisting algorithm used in the second-order sliding model control scheme, is proposed with guaranteed fast finite-time stability. Unlike the super-twisting algorithm, which uses a sliding-mode structure to achieve finite-time stability, the proposed differentiator maintains its fast finite-time stability with H\ {o}lder continuity, theoretically eliminating the harmful chattering phenomenon in practical control applications. Perturbation and noise robustness analyses are conducted for the proposed differentiator. The dissertation formulates the rotorcraft tracking control and disturbance estimation problems separately. The rotorcraft aerial vehicle is modeled as a rigid body with control inputs that actuate all degrees of freedom of rotational motion and only one degree of freedom of translational motion. The motion of the aircraft is globally represented on \TSE, which is the tangent bundle of the special Euclidean group \SE. The translational and attitude control schemes track the desired position and attitude on \SE. The disturbance estimation problem is formulated as an extended states observer on \TSE. Next, two rotorcraft control schemes on \SE with disturbance rejection mechanisms are presented. The proposed disturbance rejection control systems comprise two parts: an extended states observer for disturbance estimation and a tracking control scheme containing the disturbance rejection term to track the trajectory. The first disturbance rejection control scheme comprises an exponentially stable extended states observer and an asymptotically stable tracking control scheme. The second system comprises a fast finite-time stable extended state observer and a fast finite-time stable tracking control scheme. The fast finite-time stable extended state observer uses the \textup{H\ {o}}lder-continuous differentiator to estimate the resultant external disturbance force and disturbance torque acting on the vehicle. It ensures stable convergence of disturbance estimation errors in finite time when the disturbances are constant. Software-in-the-loop simulation is carried out for the active disturbance rejection control scheme with an open-source autopilot and a physics-based simulation tool. The simulation utilizes simulated wind gusts, propeller aerodynamics, actuator limitation, and measurement noise to validate the disturbance rejection control systems in a simulated environment with high fidelity. Two sets of flight experiments are conducted to investigate the autonomous rotorcraft flight control performance under turbulent income flows. A wind tunnel composed of fan arrays is involved in both experiments to provide different turbulent incoming flows by adjusting the duty of individual fans. The first set of experiments conducts income flow measurements for wind tunnel calibration. For the turbulent flows generated by different fan configurations, their steady velocity field and unsteady turbulence characteristics are measured by a pressure scanner and hot-wire anemometer. The second set of experiments involves flight tests of a rotorcraft within the turbulent environment measured and calibrated in the first experiment set. The proposed extended states observer is implemented onto a rotorcraft by customizing an open-source autopilot software. With this implementation, the flight control performance of the proposed disturbance rejection control schemes is presented and compared with the autopilot without customization. The experimental results show that the proposed disturbance rejection control scheme enhanced by the disturbance estimation schem

    Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    Get PDF
    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight propulsion control (IFPC) system design for a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H-infinity control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H-infinity based IFPC design study performed earlier is used as the basis to formulate the robust H-infinity control design problem and improve upon the previous design. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope. A controller scheduling technique which accounts for changes in plant control effectiveness with variation in trim conditions is developed and off design model performance results are presented

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Accurate Tracking of Aggressive Quadrotor Trajectories using Incremental Nonlinear Dynamic Inversion and Differential Flatness

    Full text link
    Autonomous unmanned aerial vehicles (UAVs) that can execute aggressive (i.e., high-speed and high-acceleration) maneuvers have attracted significant attention in the past few years. This paper focuses on accurate tracking of aggressive quadcopter trajectories. We propose a novel control law for tracking of position and yaw angle and their derivatives of up to fourth order, specifically, velocity, acceleration, jerk, and snap along with yaw rate and yaw acceleration. Jerk and snap are tracked using feedforward inputs for angular rate and angular acceleration based on the differential flatness of the quadcopter dynamics. Snap tracking requires direct control of body torque, which we achieve using closed-loop motor speed control based on measurements from optical encoders attached to the motors. The controller utilizes incremental nonlinear dynamic inversion (INDI) for robust tracking of linear and angular accelerations despite external disturbances, such as aerodynamic drag forces. Hence, prior modeling of aerodynamic effects is not required. We rigorously analyze the proposed control law through response analysis, and we demonstrate it in experiments. The controller enables a quadcopter UAV to track complex 3D trajectories, reaching speeds up to 12.9 m/s and accelerations up to 2.1g, while keeping the root-mean-square tracking error down to 6.6 cm, in a flight volume that is roughly 18 m by 7 m and 3 m tall. We also demonstrate the robustness of the controller by attaching a drag plate to the UAV in flight tests and by pulling on the UAV with a rope during hover.Comment: To be published in IEEE Transactions on Control Systems Technology. Revision: new set of experiments at increased speed (up to 12.9 m/s), updated controller design using quaternion representation, new video available at https://youtu.be/K15lNBAKDC

    Robust integrated autopilot/autothrottle design using constrained parameter optimization

    Get PDF
    A multivariable control design method based on constrained parameter optimization was applied to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the following: (1) direct synthesis of a multivariable 'inner-loop' feedback control system based on total energy control principles; (2) synthesis of speed/altitude-hold designs as 'outer-loop' feedback/feedforward control systems around the above inner loop; and (3) direct synthesis of a combined 'inner-loop' and 'outer-loop' multivariable control system. The design procedure offers a direct and structured approach for the determination of a set of controller gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The presented approach may be applied to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by this method following careful problem formulation of the design objectives and constraints. Performance characteristics of the optimization design were improved over the current autopilot design on the B737-100 Transport Research Vehicle (TSRV) at the landing approach and cruise flight conditions; particularly in the areas of closed-loop damping, command responses, and control activity in the presence of turbulence

    The adaptive control system of quadrocopter motion

    Get PDF
    In this paper we present a system for automatic control of a quadrocopter based on the adaptive control system. The task is to ensure the motion of the quadrocopter along the given route and to control the stabilization of the quadrocopter in the air in a horizontal or in a given angular position by sending control signals to the engines. The nonlinear model of a quadrocopter is expressed in the form of a linear non-stationary system

    The adaptive control system of quadrocopter motion

    Get PDF
    In this paper we present a system for automatic control of a quadrocopter based on the adaptive control system. The task is to ensure the motion of the quadrocopter along the given route and to control the stabilization of the quadrocopter in the air in a horizontal or in a given angular position by sending control signals to the engines. The nonlinear model of a quadrocopter is expressed in the form of a linear non-stationary system

    Development of Robust Control Laws for Disturbance Rejection in Rotorcraft UAVs

    Get PDF
    Inherent stability inside the flight envelope must be guaranteed in order to safely introduce private and commercial UAV systems into the national airspace. The rejection of unknown external wind disturbances offers a challenging task due to the limited available information about the unpredictable and turbulent characteristics of the wind. This thesis focuses on the design, development and implementation of robust control algorithms for disturbance rejection in rotorcraft UAVs. The main focus is the rejection of external disturbances caused by wind influences. Four control algorithms are developed in an effort to mitigate wind effects: baseline nonlinear dynamic inversion (NLDI), a wind rejection extension for the NLDI, NLDI with adaptive artificial neural networks (ANN) augmentation, and NLDI with L1 adaptive control augmentation. A simulation environment is applied to evaluate the performance of these control algorithms under external wind conditions using a Monte Carlo analysis. Outdoor flight test results are presented for the implementation of the baseline NLDI, NLDI augmented with adaptive ANN and NLDI augmented with L1 adaptive control algorithms in a DJI F330 Flamewheel quadrotor UAV system. A set of metrics is applied to compare and evaluate the overall performance of the developed control algorithms under external wind disturbances. The obtained results show that the extended NLDI exhibits undesired characteristics while the augmentation of the baseline NLDI control law with adaptive ANN and L1 output-feedback adaptive control improve the robustness of the translational and rotational dynamics of a rotorcraft UAV in the presence of wind disturbances
    corecore