258 research outputs found

    Energy Efficient, Cooperative Communication in Low-Power Wireless Networks

    Get PDF
    The increased interest in massive deployment of wireless sensors and network densification requires more innovation in low-latency communication across multi-hop networks. Moreover, the resource constrained nature of sensor nodes calls for more energy efficient transmission protocols, in order to increase the battery life of said devices. Therefore, it is important to investigate possible technologies that would aid in improving energy efficiency and decreasing latency in wireless sensor networks (WSN) while focusing on application specific requirements. To this end, and based on state of the art Glossy, a low-power WSN flooding protocol, this dissertation introduces two energy efficient, cooperative transmission schemes for low-power communication in WSNs, with the aim of achieving performance gains in energy efficiency, latency and power consumption. These approaches apply several cooperative transmission technologies such as physical layer network coding and transmit beamforming. Moreover, mathematical tools such as convex optimization and game theory are used in order to analytically construct the proposed schemes. Then, system level simulations are performed, where the proposed schemes are evaluated based on different criteria. First, in order to improve over all latency in the network as well as energy efficiency, MF-Glossy is proposed; a communication scheme that enables the simultaneous flooding of different packets from multiple sources to all nodes in the network. Using a communication-theoretic analysis, upper bounds on the performance of Glossy and MF-Glossy are determined. Further, simulation results show that MF-Glossy has the potential to achieve several-fold improvements in goodput and latency across a wide spectrum of network configurations at lower energy costs and comparable packet reception rates. Hardware implementation challenges are discussed as a step towards harnessing the potential of MF-Glossy in real networks, while focusing on key challenges and possible solutions. Second, under the assumption of available channel state information (CSI) at all nodes, centralized and distributed beamforming and power control algorithms are proposed and their performance is evaluated. They are compared in terms of energy efficiency to standard Glossy. Numerical simulations demonstrate that a centralized power control scheme can achieve several-fold improvements in energy efficiency over Glossy across a wide spectrum of network configurations at comparable packet reception rates. Furthermore, the more realistic scenario where CSI is not available at transmitting nodes is considered. To battle CSI unavailability, cooperation is introduced on two stages. First, cooperation between receiving and transmitting nodes is proposed for the process of CSI acquisition, where the receivers provide the transmitters with quantized (e.g. imperfect) CSI. Then, cooperation within transmitting nodes is proposed for the process of multi-cast transmit beamforming. In addition to an analytical formulation of the robust multi-cast beamforming problem with imperfect CSI, its performance is evaluated, in terms of energy efficiency, through numerical simulations. It is shown that the level of cooperation, represented by the number of limited feedback bits from receivers to transmitters, greatly impacts energy efficiency. To this end, the optimization problem of finding the optimal number of feedback bits B is formulated, as a programming problem, under QoS constraints of 5% maximum outage. Numerical simulations show that there exists an optimal number of feedback bits that maximizes energy efficiency. Finally, the effect of choosing cooperating transmitters on energy efficiency is studied, where it is shown that an optimum group of cooperating transmit nodes, also known as a transmit coalition, can be formed in order to maximize energy efficiency. The investigated techniques including optimum feedback bits and transmit coalition formation can achieve a 100% increase in energy efficiency when compared to state of the art Glossy under same operation requirements in very dense networks. In summary, the two main contributions in this dissertation provide insights on the possible performance gains that can be achieved when cooperative technologies are used in low-power wireless networks

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Architectures and synchronization techniques for distributed satellite systems: a survey

    Get PDF
    Cohesive Distributed Satellite Systems (CDSSs) is a key enabling technology for the future of remote sensing and communication missions. However, they have to meet strict synchronization requirements before their use is generalized. When clock or local oscillator signals are generated locally at each of the distributed nodes, achieving exact synchronization in absolute phase, frequency, and time is a complex problem. In addition, satellite systems have significant resource constraints, especially for small satellites, which are envisioned to be part of the future CDSSs. Thus, the development of precise, robust, and resource-efficient synchronization techniques is essential for the advancement of future CDSSs. In this context, this survey aims to summarize and categorize the most relevant results on synchronization techniques for Distributed Satellite Systems (DSSs). First, some important architecture and system concepts are defined. Then, the synchronization methods reported in the literature are reviewed and categorized. This article also provides an extensive list of applications and examples of synchronization techniques for DSSs in addition to the most significant advances in other operations closely related to synchronization, such as inter-satellite ranging and relative position. The survey also provides a discussion on emerging data-driven synchronization techniques based on Machine Learning (ML). Finally, a compilation of current research activities and potential research topics is proposed, identifying problems and open challenges that can be useful for researchers in the field.This work was supported by the Luxembourg National Research Fund (FNR), through the CORE Project COHEsive SATellite (COHESAT): Cognitive Cohesive Networks of Distributed Units for Active and Passive Space Applications, under Grant FNR11689919.Award-winningPostprint (published version

    6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap

    Get PDF
    The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communicatio
    • …
    corecore