14,808 research outputs found

    Rank-based linkage I: triplet comparisons and oriented simplicial complexes

    Full text link
    Rank-based linkage is a new tool for summarizing a collection SS of objects according to their relationships. These objects are not mapped to vectors, and ``similarity'' between objects need be neither numerical nor symmetrical. All an object needs to do is rank nearby objects by similarity to itself, using a Comparator which is transitive, but need not be consistent with any metric on the whole set. Call this a ranking system on SS. Rank-based linkage is applied to the KK-nearest neighbor digraph derived from a ranking system. Computations occur on a 2-dimensional abstract oriented simplicial complex whose faces are among the points, edges, and triangles of the line graph of the undirected KK-nearest neighbor graph on SS. In ∣S∣K2|S| K^2 steps it builds an edge-weighted linkage graph (S,L,σ)(S, \mathcal{L}, \sigma) where σ({x,y})\sigma(\{x, y\}) is called the in-sway between objects xx and yy. Take Lt\mathcal{L}_t to be the links whose in-sway is at least tt, and partition SS into components of the graph (S,Lt)(S, \mathcal{L}_t), for varying tt. Rank-based linkage is a functor from a category of out-ordered digraphs to a category of partitioned sets, with the practical consequence that augmenting the set of objects in a rank-respectful way gives a fresh clustering which does not ``rip apart`` the previous one. The same holds for single linkage clustering in the metric space context, but not for typical optimization-based methods. Open combinatorial problems are presented in the last section.Comment: 37 pages, 12 figure

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    Audio-Visual Automatic Speech Recognition Towards Education for Disabilities

    Get PDF
    Education is a fundamental right that enriches everyone’s life. However, physically challenged people often debar from the general and advanced education system. Audio-Visual Automatic Speech Recognition (AV-ASR) based system is useful to improve the education of physically challenged people by providing hands-free computing. They can communicate to the learning system through AV-ASR. However, it is challenging to trace the lip correctly for visual modality. Thus, this paper addresses the appearance-based visual feature along with the co-occurrence statistical measure for visual speech recognition. Local Binary Pattern-Three Orthogonal Planes (LBP-TOP) and Grey-Level Co-occurrence Matrix (GLCM) is proposed for visual speech information. The experimental results show that the proposed system achieves 76.60 % accuracy for visual speech and 96.00 % accuracy for audio speech recognition

    Neural Architecture Search: Insights from 1000 Papers

    Full text link
    In the past decade, advances in deep learning have resulted in breakthroughs in a variety of areas, including computer vision, natural language understanding, speech recognition, and reinforcement learning. Specialized, high-performing neural architectures are crucial to the success of deep learning in these areas. Neural architecture search (NAS), the process of automating the design of neural architectures for a given task, is an inevitable next step in automating machine learning and has already outpaced the best human-designed architectures on many tasks. In the past few years, research in NAS has been progressing rapidly, with over 1000 papers released since 2020 (Deng and Lindauer, 2021). In this survey, we provide an organized and comprehensive guide to neural architecture search. We give a taxonomy of search spaces, algorithms, and speedup techniques, and we discuss resources such as benchmarks, best practices, other surveys, and open-source libraries

    Qluster: An easy-to-implement generic workflow for robust clustering of health data

    Get PDF
    The exploration of heath data by clustering algorithms allows to better describe the populations of interest by seeking the sub-profiles that compose it. This therefore reinforces medical knowledge, whether it is about a disease or a targeted population in real life. Nevertheless, contrary to the so-called conventional biostatistical methods where numerous guidelines exist, the standardization of data science approaches in clinical research remains a little discussed subject. This results in a significant variability in the execution of data science projects, whether in terms of algorithms used, reliability and credibility of the designed approach. Taking the path of parsimonious and judicious choice of both algorithms and implementations at each stage, this article proposes Qluster, a practical workflow for performing clustering tasks. Indeed, this workflow makes a compromise between (1) genericity of applications (e.g. usable on small or big data, on continuous, categorical or mixed variables, on database of high-dimensionality or not), (2) ease of implementation (need for few packages, few algorithms, few parameters, ...), and (3) robustness (e.g. use of proven algorithms and robust packages, evaluation of the stability of clusters, management of noise and multicollinearity). This workflow can be easily automated and/or routinely applied on a wide range of clustering projects. It can be useful both for data scientists with little experience in the field to make data clustering easier and more robust, and for more experienced data scientists who are looking for a straightforward and reliable solution to routinely perform preliminary data mining. A synthesis of the literature on data clustering as well as the scientific rationale supporting the proposed workflow is also provided. Finally, a detailed application of the workflow on a concrete use case is provided, along with a practical discussion for data scientists. An implementation on the Dataiku platform is available upon request to the authors

    Open Set Classification of GAN-based Image Manipulations via a ViT-based Hybrid Architecture

    Full text link
    Classification of AI-manipulated content is receiving great attention, for distinguishing different types of manipulations. Most of the methods developed so far fail in the open-set scenario, that is when the algorithm used for the manipulation is not represented by the training set. In this paper, we focus on the classification of synthetic face generation and manipulation in open-set scenarios, and propose a method for classification with a rejection option. The proposed method combines the use of Vision Transformers (ViT) with a hybrid approach for simultaneous classification and localization. Feature map correlation is exploited by the ViT module, while a localization branch is employed as an attention mechanism to force the model to learn per-class discriminative features associated with the forgery when the manipulation is performed locally in the image. Rejection is performed by considering several strategies and analyzing the model output layers. The effectiveness of the proposed method is assessed for the task of classification of facial attribute editing and GAN attribution

    Leveraging Hidden Positives for Unsupervised Semantic Segmentation

    Full text link
    Dramatic demand for manpower to label pixel-level annotations triggered the advent of unsupervised semantic segmentation. Although the recent work employing the vision transformer (ViT) backbone shows exceptional performance, there is still a lack of consideration for task-specific training guidance and local semantic consistency. To tackle these issues, we leverage contrastive learning by excavating hidden positives to learn rich semantic relationships and ensure semantic consistency in local regions. Specifically, we first discover two types of global hidden positives, task-agnostic and task-specific ones for each anchor based on the feature similarities defined by a fixed pre-trained backbone and a segmentation head-in-training, respectively. A gradual increase in the contribution of the latter induces the model to capture task-specific semantic features. In addition, we introduce a gradient propagation strategy to learn semantic consistency between adjacent patches, under the inherent premise that nearby patches are highly likely to possess the same semantics. Specifically, we add the loss propagating to local hidden positives, semantically similar nearby patches, in proportion to the predefined similarity scores. With these training schemes, our proposed method achieves new state-of-the-art (SOTA) results in COCO-stuff, Cityscapes, and Potsdam-3 datasets. Our code is available at: https://github.com/hynnsk/HP.Comment: Accepted to CVPR 202

    Procedure-Aware Pretraining for Instructional Video Understanding

    Full text link
    Our goal is to learn a video representation that is useful for downstream procedure understanding tasks in instructional videos. Due to the small amount of available annotations, a key challenge in procedure understanding is to be able to extract from unlabeled videos the procedural knowledge such as the identity of the task (e.g., 'make latte'), its steps (e.g., 'pour milk'), or the potential next steps given partial progress in its execution. Our main insight is that instructional videos depict sequences of steps that repeat between instances of the same or different tasks, and that this structure can be well represented by a Procedural Knowledge Graph (PKG), where nodes are discrete steps and edges connect steps that occur sequentially in the instructional activities. This graph can then be used to generate pseudo labels to train a video representation that encodes the procedural knowledge in a more accessible form to generalize to multiple procedure understanding tasks. We build a PKG by combining information from a text-based procedural knowledge database and an unlabeled instructional video corpus and then use it to generate training pseudo labels with four novel pre-training objectives. We call this PKG-based pre-training procedure and the resulting model Paprika, Procedure-Aware PRe-training for Instructional Knowledge Acquisition. We evaluate Paprika on COIN and CrossTask for procedure understanding tasks such as task recognition, step recognition, and step forecasting. Paprika yields a video representation that improves over the state of the art: up to 11.23% gains in accuracy in 12 evaluation settings. Implementation is available at https://github.com/salesforce/paprika.Comment: CVPR 202

    The cosmic waltz of Coma Berenices and Latyshev 2 (Group X). Membership, phase-space structure, mass, and energy distributions

    Full text link
    Context. Open clusters (OCs) are fundamental benchmarks where theories of star formation and stellar evolution can be tested and validated. Coma Ber and Latyshev 2 (Group X) are the second and third OCs closest to the Sun, making them excellent targets to search for low-mass stars and ultra-cool dwarfs. In addition, this pair will experience a flyby in 10-16 Myr which makes it a benchmark to test OCs pair interactions. Aims. We aim at analysing the membership, luminosity, mass, phase-space (i.e., positions and velocities), and energy distributions for Coma Ber and Latyshev 2 and test the hypothesis of the mixing of their populations at the encounter time. Methods. We develop a new phase-space membership methodology and apply it to Gaia data. With the recovered members we infer the phase-space, luminosity and mass distributions using publicly available Bayesian inference codes. Then, with a publicly available orbit integration code and members' positions and velocities, we integrate their orbits 20 Myr into the future. Results. In Coma Ber, we identify 302 candidate members distributed in the core and tidal tails. The tails are dynamically cold and asymmetrically populated. The stellar system called Group X is made of two structures: the disrupted OC Latyshev 2 (186 candidate members) and a loose stellar association called Mecayotl 1 (146 candidate members), both of them will fly by Coma Ber in 11.3±0.511.3\pm0.5 Myr and 14.0±0.614.0\pm0.6 Myr, respectively, and each other in 8.1±1.38.1\pm1.3 Myr. Conclusions. We study the dynamical properties of the core and tails of Coma Ber and also confirm the existence of the OC Latyshev 2 and its neighbour stellar association Mecayotl 1. Although these three systems will experience encounters we find no evidence supporting the mixing of their populations.Comment: 25 pages, 19 figures, accepted for publication in Astronomy & Astrophysic

    Machine Learning Research Trends in Africa: A 30 Years Overview with Bibliometric Analysis Review

    Full text link
    In this paper, a critical bibliometric analysis study is conducted, coupled with an extensive literature survey on recent developments and associated applications in machine learning research with a perspective on Africa. The presented bibliometric analysis study consists of 2761 machine learning-related documents, of which 98% were articles with at least 482 citations published in 903 journals during the past 30 years. Furthermore, the collated documents were retrieved from the Science Citation Index EXPANDED, comprising research publications from 54 African countries between 1993 and 2021. The bibliometric study shows the visualization of the current landscape and future trends in machine learning research and its application to facilitate future collaborative research and knowledge exchange among authors from different research institutions scattered across the African continent
    • …
    corecore