3,302 research outputs found

    Fast Mojette Transform for Discrete Tomography

    Full text link
    A new algorithm for reconstructing a two dimensional object from a set of one dimensional projected views is presented that is both computationally exact and experimentally practical. The algorithm has a computational complexity of O(n log2 n) with n = N^2 for an NxN image, is robust in the presence of noise and produces no artefacts in the reconstruction process, as is the case with conventional tomographic methods. The reconstruction process is approximation free because the object is assumed to be discrete and utilizes fully discrete Radon transforms. Noise in the projection data can be suppressed further by introducing redundancy in the reconstruction. The number of projections required for exact reconstruction and the response to noise can be controlled without comprising the digital nature of the algorithm. The digital projections are those of the Mojette Transform, a form of discrete linogram. A simple analytical mapping is developed that compacts these projections exactly into symmetric periodic slices within the Discrete Fourier Transform. A new digital angle set is constructed that allows the periodic slices to completely fill all of the objects Discrete Fourier space. Techniques are proposed to acquire these digital projections experimentally to enable fast and robust two dimensional reconstructions.Comment: 22 pages, 13 figures, Submitted to Elsevier Signal Processin

    The Discrete radon transform: A more efficient approach to image reconstruction

    Get PDF
    The Radon transform and its inversion are the mathematical keys that enable tomography. Radon transforms are defined for continuous objects with continuous projections at all angles in [0,Ï€). In practice, however, we pre-filter discrete projections take

    Signal processing with Fourier analysis, novel algorithms and applications

    Get PDF
    Fourier analysis is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions, also analogously known as sinusoidal modeling. The original idea of Fourier had a profound impact on mathematical analysis, physics and engineering because it diagonalizes time-invariant convolution operators. In the past signal processing was a topic that stayed almost exclusively in electrical engineering, where only the experts could cancel noise, compress and reconstruct signals. Nowadays it is almost ubiquitous, as everyone now deals with modern digital signals. Medical imaging, wireless communications and power systems of the future will experience more data processing conditions and wider range of applications requirements than the systems of today. Such systems will require more powerful, efficient and flexible signal processing algorithms that are well designed to handle such needs. No matter how advanced our hardware technology becomes we will still need intelligent and efficient algorithms to address the growing demands in signal processing. In this thesis, we investigate novel techniques to solve a suite of four fundamental problems in signal processing that have a wide range of applications. The relevant equations, literature of signal processing applications, analysis and final numerical algorithms/methods to solve them using Fourier analysis are discussed for different applications in the electrical engineering/computer science. The first four chapters cover the following topics of central importance in the field of signal processing: • Fast Phasor Estimation using Adaptive Signal Processing (Chapter 2) • Frequency Estimation from Nonuniform Samples (Chapter 3) • 2D Polar and 3D Spherical Polar Nonuniform Discrete Fourier Transform (Chapter 4) • Robust 3D registration using Spherical Polar Discrete Fourier Transform and Spherical Harmonics (Chapter 5) Even though each of these four methods discussed may seem completely disparate, the underlying motivation for more efficient processing by exploiting the Fourier domain signal structure remains the same. The main contribution of this thesis is the innovation in the analysis, synthesis, discretization of certain well known problems like phasor estimation, frequency estimation, computations of a particular non-uniform Fourier transform and signal registration on the transformed domain. We conduct propositions and evaluations of certain applications relevant algorithms such as, frequency estimation algorithm using non-uniform sampling, polar and spherical polar Fourier transform. The techniques proposed are also useful in the field of computer vision and medical imaging. From a practical perspective, the proposed algorithms are shown to improve the existing solutions in the respective fields where they are applied/evaluated. The formulation and final proposition is shown to have a variety of benefits. Future work with potentials in medical imaging, directional wavelets, volume rendering, video/3D object classifications, high dimensional registration are also discussed in the final chapter. Finally, in the spirit of reproducible research we release the implementation of these algorithms to the public using Github

    From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals

    Full text link
    Conventional sub-Nyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind sub-Nyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. Our primary design goals are efficient hardware implementation and low computational load on the supporting digital processing. We propose a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms. The product is then lowpass filtered and sampled uniformly at a low rate, which is orders of magnitude smaller than Nyquist. Perfect recovery from the proposed samples is achieved under certain necessary and sufficient conditions. We also develop a digital architecture, which allows either reconstruction of the analog input, or processing of any band of interest at a low rate, that is, without interpolating to the high Nyquist rate. Numerical simulations demonstrate many engineering aspects: robustness to noise and mismodeling, potential hardware simplifications, realtime performance for signals with time-varying support and stability to quantization effects. We compare our system with two previous approaches: periodic nonuniform sampling, which is bandwidth limited by existing hardware devices, and the random demodulator, which is restricted to discrete multitone signals and has a high computational load. In the broader context of Nyquist sampling, our scheme has the potential to break through the bandwidth barrier of state-of-the-art analog conversion technologies such as interleaved converters.Comment: 17 pages, 12 figures, to appear in IEEE Journal of Selected Topics in Signal Processing, the special issue on Compressed Sensin

    Sub-Nyquist Sampling: Bridging Theory and Practice

    Full text link
    Sampling theory encompasses all aspects related to the conversion of continuous-time signals to discrete streams of numbers. The famous Shannon-Nyquist theorem has become a landmark in the development of digital signal processing. In modern applications, an increasingly number of functions is being pushed forward to sophisticated software algorithms, leaving only those delicate finely-tuned tasks for the circuit level. In this paper, we review sampling strategies which target reduction of the ADC rate below Nyquist. Our survey covers classic works from the early 50's of the previous century through recent publications from the past several years. The prime focus is bridging theory and practice, that is to pinpoint the potential of sub-Nyquist strategies to emerge from the math to the hardware. In that spirit, we integrate contemporary theoretical viewpoints, which study signal modeling in a union of subspaces, together with a taste of practical aspects, namely how the avant-garde modalities boil down to concrete signal processing systems. Our hope is that this presentation style will attract the interest of both researchers and engineers in the hope of promoting the sub-Nyquist premise into practical applications, and encouraging further research into this exciting new frontier.Comment: 48 pages, 18 figures, to appear in IEEE Signal Processing Magazin

    Recovering missing slices of the discrete fourier transform using ghosts

    Get PDF
    The discrete Fourier transform (DFT) underpins the solution to many inverse problems commonly possessing missing or unmeasured frequency information. This incomplete coverage of the Fourier space always produces systematic artifacts called Ghosts. In this paper, a fast and exact method for deconvolving cyclic artifacts caused by missing slices of the DFT using redundant image regions is presented. The slices discussed here originate from the exact partitioning of the Discrete Fourier Transform (DFT) space, under the projective Discrete Radon Transform, called the discrete Fourier slice theorem. The method has a computational complexity of O(n\log-{2}n) (for an n=N\times N image) and is constructed from a new cyclic theory of Ghosts. This theory is also shown to unify several aspects of work done on Ghosts over the past three decades. This paper concludes with an application to fast, exact, non-iterative image reconstruction from a highly asymmetric set of rational angle projections that give rise to sets of sparse slices within the DFT
    • …
    corecore