770 research outputs found

    Exploiting Rogue Signals to Attack Trust-based Cooperative Spectrum Sensing in Cognitive Radio Networks

    Get PDF
    Cognitive radios are currently presented as the solution to the ever-increasing spectrum shortage problem. However, their increased capabilities over traditional radios introduce a new dimension of security threats. Cooperative Spectrum Sensing (CSS) has been proposed as a means to protect cognitive radio networks from the well known security threats: Primary User Emulation (PUE) and Spectrum Sensing Data Falsification (SSDF). I demonstrate a new threat to trust-based CSS protocols, called the Rogue Signal Framing (RSF) intrusion. Rogue signals can be exploited to create the illusion of malicious sensors which leads to the framing of innocent sensors and consequently, their removal from the shared spectrum sensing. Ultimately, with fewer sensors working together, the spectrum sensing is less robust for making correct spectrum access decisions. The simulation experiments illustrate the impact of RSF intrusions which, in severe cases, shows roughly 40\% of sensors removed. To mitigate the RSF intrusion\u27s damage to the network\u27s trust, I introduce a new defense based on community detection from analyzing the network\u27s Received Signal Strength (RSS) diversity. Tests show a 95\% damage reduction in terms of removed sensors from the shared spectrum sensing, thus retaining the benefits of CSS protocols

    Rogue Signal Threat on Trust-based Cooperative Spectrum Sensing in Cognitive Radio Networks

    Get PDF
    Cognitive Radio Networks (CRNs) are a next generation network that is expected to solve the wireless spectrum shortage problem, which is the shrinking of available wireless spectrum resources needed to facilitate future wireless applications. The first CRN standard, the IEEE 802.22, addresses this particular problem by allowing CRNs to share geographically unused TV spectrum to mitigate the spectrum shortage. Equipped with reasoning and learning engines, cognitive radios operate autonomously to locate unused channels to maximize its own bandwidth and Quality-of-Service (QoS). However, their increased capabilities over traditional radios introduce a new dimension of security threats. In an NSF 2009 workshop, the FCC raised the question, “What authentication mechanisms are needed to support cooperative cognitive radio networks? Are reputation-based schemes useful supplements to conventional Public Key Infrastructure (PKI) authentication protocols?” Reputation-based schemes in cognitive radio networks are a popular technique for performing robust and accurate spectrum sensing without any inter-communication with licensed networks, but the question remains on how effective they are at satisfying the FCC security requirements. Our work demonstrates that trust-based Cooperative Spectrum Sensing (CSS) protocols are vulnerable to rogue signals, which creates the illusion of inside attackers and raises the concern that such schemes are overly sensitive Intrusion Detection Systems (IDS). The erosion of the sensor reputations in trust-based CSS protocols makes CRNs vulnerable to future attacks. To counter this new threat, we introduce community detection and cluster analytics to detect and negate the impact of rogue signals on sensor reputations

    Enforcement in Dynamic Spectrum Access Systems

    Get PDF
    The spectrum access rights granted by the Federal government to spectrum users come with the expectation of protection from harmful interference. As a consequence of the growth of wireless demand and services of all types, technical progress enabling smart agile radio networks, and on-going spectrum management reform, there is both a need and opportunity to use and share spectrum more intensively and dynamically. A key element of any framework for managing harmful interference is the mechanism for enforcement of those rights. Since the rights to use spectrum and to protection from harmful interference vary by band (licensed/unlicensed, legacy/newly reformed) and type of use/users (primary/secondary, overlay/underlay), it is reasonable to expect that the enforcement mechanisms may need to vary as well.\ud \ud In this paper, we present a taxonomy for evaluating alternative mechanisms for enforcing interference protection for spectrum usage rights, with special attention to the potential changes that may be expected from wider deployment of Dynamic Spectrum Access (DSA) systems. Our exploration of how the design of the enforcement regime interacts with and influences the incentives of radio operators under different rights regimes and market scenarios is intended to assist in refining thinking about appropriate access rights regimes and how best to incentivize investment and growth in more efficient and valuable uses of the radio frequency spectrum

    Physical Layer Defenses Against Primary User Emulation Attacks

    Get PDF
    Cognitive Radio (CR) is a promising technology that works by detecting unused parts of the spectrum and automatically reconfiguring the communication system\u27s parameters in order to operate in the available communication channels while minimizing interference. CR enables efficient use of the Radio Frequency (RF) spectrum by generating waveforms that can coexist with existing users in licensed spectrum bands. Spectrum sensing is one of the most important components of CR systems because it provides awareness of its operating environment, as well as detecting the presence of primary (licensed) users of the spectrum

    Resilient Learning-Based Control for Synchronization of Passive Multi-Agent Systems under Attack

    Full text link
    In this paper, we show synchronization for a group of output passive agents that communicate with each other according to an underlying communication graph to achieve a common goal. We propose a distributed event-triggered control framework that will guarantee synchronization and considerably decrease the required communication load on the band-limited network. We define a general Byzantine attack on the event-triggered multi-agent network system and characterize its negative effects on synchronization. The Byzantine agents are capable of intelligently falsifying their data and manipulating the underlying communication graph by altering their respective control feedback weights. We introduce a decentralized detection framework and analyze its steady-state and transient performances. We propose a way of identifying individual Byzantine neighbors and a learning-based method of estimating the attack parameters. Lastly, we propose learning-based control approaches to mitigate the negative effects of the adversarial attack

    Machine Learning based RF Transmitter Characterization in the Presence of Adversaries

    Get PDF
    The advances in wireless technologies have led to autonomous deployments of various wireless networks. As these networks must co-exist, it is important that all transmitters and receivers are aware of their radio frequency (RF) surroundings so that they can learn and adapt their transmission and reception parameters to best suit their needs. To this end, machine learning techniques have become popular as they can learn, analyze and even predict the RF signals and associated parameters that characterize the RF environment. In this dissertation, we address some of the fundamental challenges on how to effectively apply different learning techniques in the RF domain. In the presence of adversaries, malicious activities such as jamming, and spoofing are inevitable which render most machine learning techniques ineffective. To facilitate learning in such settings, we propose an adversarial learning-based approach to detect unauthorized exploitation of RF spectrum. First, we show the applicability of existing machine learning algorithms in the RF domain. We design and implement three recurrent neural networks using different types of cell models for fingerprinting RF transmitters. Next, we focus on securing transmissions on dynamic spectrum access network where primary user emulation (PUE) attacks can pose a significant threat. We present a generative adversarial net (GAN) based solution to counter such PUE attacks. Ultimately, we propose recurrent neural network models which are able to accurately predict the primary users\u27 activities in DSA networks so that the secondary users can opportunistically access the shared spectrum. We implement the proposed learning models on testbeds consisting of Universal Software Radio Peripherals (USRPs) working as Software Defined Radios (SDRs). Results reveal significant accuracy gains in accurately characterizing RF transmitters- thereby demonstrating the potential of our models for real world deployments
    • …
    corecore