3,146 research outputs found

    Illumination invariant stationary object detection

    Get PDF
    A real-time system for the detection and tracking of moving objects that becomes stationary in a restricted zone. A new pixel classification method based on the segmentation history image is used to identify stationary objects in the scene. These objects are then tracked using a novel adaptive edge orientation-based tracking method. Experimental results have shown that the tracking technique gives more than a 95% detection success rate, even if objects are partially occluded. The tracking results, together with the historic edge maps, are analysed to remove objects that are no longer stationary or are falsely identified as foreground regions because of sudden changes in the illumination conditions. The technique has been tested on over 7 h of video recorded at different locations and time of day, both outdoors and indoors. The results obtained are compared with other available state-of-the-art methods

    Video analytics for security systems

    Get PDF
    This study has been conducted to develop robust event detection and object tracking algorithms that can be implemented in real time video surveillance applications. The aim of the research has been to produce an automated video surveillance system that is able to detect and report potential security risks with minimum human intervention. Since the algorithms are designed to be implemented in real-life scenarios, they must be able to cope with strong illumination changes and occlusions. The thesis is divided into two major sections. The first section deals with event detection and edge based tracking while the second section describes colour measurement methods developed to track objects in crowded environments. The event detection methods presented in the thesis mainly focus on detection and tracking of objects that become stationary in the scene. Objects such as baggage left in public places or vehicles parked illegally can cause a serious security threat. A new pixel based classification technique has been developed to detect objects of this type in cluttered scenes. Once detected, edge based object descriptors are obtained and stored as templates for tracking purposes. The consistency of these descriptors is examined using an adaptive edge orientation based technique. Objects are tracked and alarm events are generated if the objects are found to be stationary in the scene after a certain period of time. To evaluate the full capabilities of the pixel based classification and adaptive edge orientation based tracking methods, the model is tested using several hours of real-life video surveillance scenarios recorded at different locations and time of day from our own and publically available databases (i-LIDS, PETS, MIT, ViSOR). The performance results demonstrate that the combination of pixel based classification and adaptive edge orientation based tracking gave over 95% success rate. The results obtained also yield better detection and tracking results when compared with the other available state of the art methods. In the second part of the thesis, colour based techniques are used to track objects in crowded video sequences in circumstances of severe occlusion. A novel Adaptive Sample Count Particle Filter (ASCPF) technique is presented that improves the performance of the standard Sample Importance Resampling Particle Filter by up to 80% in terms of computational cost. An appropriate particle range is obtained for each object and the concept of adaptive samples is introduced to keep the computational cost down. The objective is to keep the number of particles to a minimum and only to increase them up to the maximum, as and when required. Variable standard deviation values for state vector elements have been exploited to cope with heavy occlusion. The technique has been tested on different video surveillance scenarios with variable object motion, strong occlusion and change in object scale. Experimental results show that the proposed method not only tracks the object with comparable accuracy to existing particle filter techniques but is up to five times faster. Tracking objects in a multi camera environment is discussed in the final part of the thesis. The ASCPF technique is deployed within a multi-camera environment to track objects across different camera views. Such environments can pose difficult challenges such as changes in object scale and colour features as the objects move from one camera view to another. Variable standard deviation values of the ASCPF have been utilized in order to cope with sudden colour and scale changes. As the object moves from one scene to another, the number of particles, together with the spread value, is increased to a maximum to reduce any effects of scale and colour change. Promising results are obtained when the ASCPF technique is tested on live feeds from four different camera views. It was found that not only did the ASCPF method result in the successful tracking of the moving object across different views but also maintained the real time frame rate due to its reduced computational cost thus indicating that the method is a potential practical solution for multi camera tracking applications

    Security event recognition for visual surveillance

    Get PDF
    With rapidly increasing deployment of surveillance cameras, the reliable methods for automatically analyzing the surveillance video and recognizing special events are demanded by different practical applications. This paper proposes a novel effective framework for security event analysis in surveillance videos. First, convolutional neural network (CNN) framework is used to detect objects of interest in the given videos. Second, the owners of the objects are recognized and monitored in real-time as well. If anyone moves any object, this person will be verified whether he/she is its owner. If not, this event will be further analyzed and distinguished between two different scenes: moving the object away or stealing it. To validate the proposed approach, a new video dataset consisting of various scenarios is constructed for more complex tasks. For comparison purpose, the experiments are also carried out on the benchmark databases related to the task on abandoned luggage detection. The experimental results show that the proposed approach outperforms the state-of-the-art methods and effective in recognizing complex security events. © 2017 Copernicus GmbH. All rights reserved

    Robust abandoned object detection integrating wide area visual surveillance and social context

    Get PDF
    This paper presents a video surveillance framework that robustly and efficiently detects abandoned objects in surveillance scenes. The framework is based on a novel threat assessment algorithm which combines the concept of ownership with automatic understanding of social relations in order to infer abandonment of objects. Implementation is achieved through development of a logic-based inference engine based on Prolog. Threat detection performance is conducted by testing against a range of datasets describing realistic situations and demonstrates a reduction in the number of false alarms generated. The proposed system represents the approach employed in the EU SUBITO project (Surveillance of Unattended Baggage and the Identification and Tracking of the Owner)
    corecore