5,777 research outputs found

    Utilising semantic technologies for intelligent indexing and retrieval of digital images

    Get PDF
    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Automated speech and audio analysis for semantic access to multimedia

    Get PDF
    The deployment and integration of audio processing tools can enhance the semantic annotation of multimedia content, and as a consequence, improve the effectiveness of conceptual access tools. This paper overviews the various ways in which automatic speech and audio analysis can contribute to increased granularity of automatically extracted metadata. A number of techniques will be presented, including the alignment of speech and text resources, large vocabulary speech recognition, key word spotting and speaker classification. The applicability of techniques will be discussed from a media crossing perspective. The added value of the techniques and their potential contribution to the content value chain will be illustrated by the description of two (complementary) demonstrators for browsing broadcast news archives

    A study into annotation ranking metrics in geo-tagged image corpora

    Get PDF
    Community contributed datasets are becoming increasingly common in automated image annotation systems. One important issue with community image data is that there is no guarantee that the associated metadata is relevant. A method is required that can accurately rank the semantic relevance of community annotations. This should enable the extracting of relevant subsets from potentially noisy collections of these annotations. Having relevant, non heterogeneous tags assigned to images should improve community image retrieval systems, such as Flickr, which are based on text retrieval methods. In the literature, the current state of the art approach to ranking the semantic relevance of Flickr tags is based on the widely used tf-idf metric. In the case of datasets containing landmark images, however, this metric is inefficient due to the high frequency of common landmark tags within the data set and can be improved upon. In this paper, we present a landmark recognition framework, that provides end-to-end automated recognition and annotation. In our study into automated annotation, we evaluate 5 alternate approaches to tf-idf to rank tag relevance in community contributed landmark image corpora. We carry out a thorough evaluation of each of these ranking metrics and results of this evaluation demonstrate that four of these proposed techniques outperform the current commonly-used tf-idf approach for this task

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Unveiling the multimedia unconscious: implicit cognitive processes and multimedia content analysis

    Get PDF
    One of the main findings of cognitive sciences is that automatic processes of which we are unaware shape, to a significant extent, our perception of the environment. The phenomenon applies not only to the real world, but also to multimedia data we consume every day. Whenever we look at pictures, watch a video or listen to audio recordings, our conscious attention efforts focus on the observable content, but our cognition spontaneously perceives intentions, beliefs, values, attitudes and other constructs that, while being outside of our conscious awareness, still shape our reactions and behavior. So far, multimedia technologies have neglected such a phenomenon to a large extent. This paper argues that taking into account cognitive effects is possible and it can also improve multimedia approaches. As a supporting proof-of-concept, the paper shows not only that there are visual patterns correlated with the personality traits of 300 Flickr users to a statistically significant extent, but also that the personality traits (both self-assessed and attributed by others) of those users can be inferred from the images these latter post as "favourite"

    A window to the past through modern urban environments: Developing a photogrammetric workflow for the orientation parameter estimation of historical images

    Get PDF
    The ongoing process of digitization in archives is providing access to ever-increasing historical image collections. In many of these repositories, images can typically be viewed in a list or gallery view. Due to the growing number of digitized objects, this type of visualization is becoming increasingly complex. Among other things, it is difficult to determine how many photographs show a particular object and spatial information can only be communicated via metadata. Within the scope of this thesis, research is conducted on the automated determination and provision of this spatial data. Enhanced visualization options make this information more eas- ily accessible to scientists as well as citizens. Different types of visualizations can be presented in three-dimensional (3D), Virtual Reality (VR) or Augmented Reality (AR) applications. However, applications of this type require the estimation of the photographer’s point of view. In the photogrammetric context, this is referred to as estimating the interior and exterior orientation parameters of the camera. For determination of orientation parameters for single images, there are the established methods of Direct Linear Transformation (DLT) or photogrammetric space resection. Using these methods requires the assignment of measured object points to their homologue image points. This is feasible for single images, but quickly becomes impractical due to the large amount of images available in archives. Thus, for larger image collections, usually the Structure-from-Motion (SfM) method is chosen, which allows the simultaneous estimation of the interior as well as the exterior orientation of the cameras. While this method yields good results especially for sequential, contemporary image data, its application to unsorted historical photographs poses a major challenge. In the context of this work, which is mainly limited to scenarios of urban terrestrial photographs, the reasons for failure of the SfM process are identified. In contrast to sequential image collections, pairs of images from different points in time or from varying viewpoints show huge differences in terms of scene representation such as deviations in the lighting situation, building state, or seasonal changes. Since homologue image points have to be found automatically in image pairs or image sequences in the feature matching procedure of SfM, these image differences pose the most complex problem. In order to test different feature matching methods, it is necessary to use a pre-oriented historical dataset. Since such a benchmark dataset did not exist yet, eight historical image triples (corresponding to 24 image pairs) are oriented in this work by manual selection of homologue image points. This dataset allows the evaluation of frequently new published methods in feature matching. The initial methods used, which are based on algorithmic procedures for feature matching (e.g., Scale Invariant Feature Transform (SIFT)), provide satisfactory results for only few of the image pairs in this dataset. By introducing methods that use neural networks for feature detection and feature description, homologue features can be reliably found for a large fraction of image pairs in the benchmark dataset. In addition to a successful feature matching strategy, determining camera orientation requires an initial estimate of the principal distance. Hence for historical images, the principal distance cannot be directly determined as the camera information is usually lost during the process of digitizing the analog original. A possible solution to this problem is to use three vanishing points that are automatically detected in the historical image and from which the principal distance can then be determined. The combination of principal distance estimation and robust feature matching is integrated into the SfM process and allows the determination of the interior and exterior camera orientation parameters of historical images. Based on these results, a workflow is designed that allows archives to be directly connected to 3D applications. A search query in archives is usually performed using keywords, which have to be assigned to the corresponding object as metadata. Therefore, a keyword search for a specific building also results in hits on drawings, paintings, events, interior or detailed views directly connected to this building. However, for the successful application of SfM in an urban context, primarily the photographic exterior view of the building is of interest. While the images for a single building can be sorted by hand, this process is too time-consuming for multiple buildings. Therefore, in collaboration with the Competence Center for Scalable Data Services and Solutions (ScaDS), an approach is developed to filter historical photographs by image similarities. This method reliably enables the search for content-similar views via the selection of one or more query images. By linking this content-based image retrieval with the SfM approach, automatic determination of camera parameters for a large number of historical photographs is possible. The developed method represents a significant improvement over commercial and open-source SfM standard solutions. The result of this work is a complete workflow from archive to application that automatically filters images and calculates the camera parameters. The expected accuracy of a few meters for the camera position is sufficient for the presented applications in this work, but offer further potential for improvement. A connection to archives, which will automatically exchange photographs and positions via interfaces, is currently under development. This makes it possible to retrieve interior and exterior orientation parameters directly from historical photography as metadata which opens up new fields of research.:1 Introduction 1 1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Historical image data and archives . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Structure-from-Motion for historical images . . . . . . . . . . . . . . . . . . . 4 1.3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Selection of images and preprocessing . . . . . . . . . . . . . . . . . . 5 1.3.3 Feature detection, feature description and feature matching . . . . . . 6 1.3.3.1 Feature detection . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3.2 Feature description . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3.4 Geometric verification and robust estimators . . . . . . . . . 13 1.3.3.5 Joint methods . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.4 Initial parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.5 Bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.6 Dense reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.7 Georeferencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Generation of a benchmark dataset using historical photographs for the evaluation of feature matching methods 29 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.1 Image differences based on digitization and image medium . . . . . . . 30 2.1.2 Image differences based on different cameras and acquisition technique 31 2.1.3 Object differences based on different dates of acquisition . . . . . . . . 31 2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 The image dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 Comparison of different feature detection and description methods . . . . . . 35 2.4.1 Oriented FAST and Rotated BRIEF (ORB) . . . . . . . . . . . . . . . 36 2.4.2 Maximally Stable Extremal Region Detector (MSER) . . . . . . . . . 36 2.4.3 Radiation-invariant Feature Transform (RIFT) . . . . . . . . . . . . . 36 2.4.4 Feature matching and outlier removal . . . . . . . . . . . . . . . . . . 36 2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Photogrammetry as a link between image repository and 4D applications 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 IX Contents 3.2 Multimodal access on repositories . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 Conventional access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.2 Virtual access using online collections . . . . . . . . . . . . . . . . . . 48 3.2.3 Virtual museums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Workflow and access strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.3 Photogrammetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.4 Browser access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.5 VR and AR access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4 An adapted Structure-from-Motion Workflow for the orientation of historical images 69 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.1 Historical images for 3D reconstruction . . . . . . . . . . . . . . . . . 72 4.2.2 Algorithmic Feature Detection and Matching . . . . . . . . . . . . . . 73 4.2.3 Feature Detection and Matching using Convolutional Neural Networks 74 4.3 Feature Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.1 Step 1: Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4.2 Step 2.1: Feature Detection and Matching . . . . . . . . . . . . . . . . 78 4.4.3 Step 2.2: Vanishing Point Detection and Principal Distance Estimation 80 4.4.4 Step 3: Scene Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.5 Comparison with Three Other State-of-the-Art SfM Workflows . . . . 81 4.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5 Fully automated pose estimation of historical images 97 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2.1 Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2.2 Feature Detection and Matching . . . . . . . . . . . . . . . . . . . . . 101 5.3 Data Preparation: Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.1 Experiment and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.2.1 Layer Extraction Approach (LEA) . . . . . . . . . . . . . . . 104 5.3.2.2 Attentive Deep Local Features (DELF) Approach . . . . . . 105 5.3.3 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.4 Camera Pose Estimation of Historical Images Using Photogrammetric Methods 110 5.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.4.1.1 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . 111 5.4.1.2 Retrieval Datasets . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.4.2.1 Feature Detection and Matching . . . . . . . . . . . . . . . . 115 5.4.2.2 Geometric Verification and Camera Pose Estimation . . . . . 116 5.4.3 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 Related publications 129 6.1 Photogrammetric analysis of historical image repositores for virtual reconstruction in the field of digital humanities . . . . . . . . . . . . . . . . . . . . . . . 130 6.2 Feature matching of historical images based on geometry of quadrilaterals . . 131 6.3 Geo-information technologies for a multimodal access on historical photographs and maps for research and communication in urban history . . . . . . . . . . 132 6.4 An automated pipeline for a browser-based, city-scale mobile 4D VR application based on historical images . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.5 Software and content design of a browser-based mobile 4D VR application to explore historical city architecture . . . . . . . . . . . . . . . . . . . . . . . . 134 7 Synthesis 135 7.1 Summary of the developed workflows . . . . . . . . . . . . . . . . . . . . . . . 135 7.1.1 Error assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.1.2 Accuracy estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.1.3 Transfer of the workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2 Developments and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8 Appendix 149 8.1 Setup for the feature matching evaluation . . . . . . . . . . . . . . . . . . . . 149 8.2 Transformation from COLMAP coordinate system to OpenGL . . . . . . . . 150 References 151 List of Figures 165 List of Tables 167 List of Abbreviations 169Der andauernde Prozess der Digitalisierung in Archiven ermöglicht den Zugriff auf immer grĂ¶ĂŸer werdende historische BildbestĂ€nde. In vielen Repositorien können die Bilder typischerweise in einer Listen- oder Gallerieansicht betrachtet werden. Aufgrund der steigenden Zahl an digitalisierten Objekten wird diese Art der Visualisierung zunehmend unĂŒbersichtlicher. Es kann u.a. nur noch schwierig bestimmt werden, wie viele Fotografien ein bestimmtes Motiv zeigen. Des Weiteren können rĂ€umliche Informationen bisher nur ĂŒber Metadaten vermittelt werden. Im Rahmen der Arbeit wird an der automatisierten Ermittlung und Bereitstellung dieser rĂ€umlichen Daten geforscht. Erweiterte Visualisierungsmöglichkeiten machen diese Informationen Wissenschaftlern sowie BĂŒrgern einfacher zugĂ€nglich. Diese Visualisierungen können u.a. in drei-dimensionalen (3D), Virtual Reality (VR) oder Augmented Reality (AR) Anwendungen prĂ€sentiert werden. Allerdings erfordern Anwendungen dieser Art die SchĂ€tzung des Standpunktes des Fotografen. Im photogrammetrischen Kontext spricht man dabei von der SchĂ€tzung der inneren und Ă€ußeren Orientierungsparameter der Kamera. Zur Bestimmung der Orientierungsparameter fĂŒr Einzelbilder existieren die etablierten Verfahren der direkten linearen Transformation oder des photogrammetrischen RĂŒckwĂ€rtsschnittes. Dazu muss eine Zuordnung von gemessenen Objektpunkten zu ihren homologen Bildpunkten erfolgen. Das ist fĂŒr einzelne Bilder realisierbar, wird aber aufgrund der großen Menge an Bildern in Archiven schnell nicht mehr praktikabel. FĂŒr grĂ¶ĂŸere BildverbĂ€nde wird im photogrammetrischen Kontext somit ĂŒblicherweise das Verfahren Structure-from-Motion (SfM) gewĂ€hlt, das die simultane SchĂ€tzung der inneren sowie der Ă€ußeren Orientierung der Kameras ermöglicht. WĂ€hrend diese Methode vor allem fĂŒr sequenzielle, gegenwĂ€rtige BildverbĂ€nde gute Ergebnisse liefert, stellt die Anwendung auf unsortierten historischen Fotografien eine große Herausforderung dar. Im Rahmen der Arbeit, die sich grĂ¶ĂŸtenteils auf Szenarien stadtrĂ€umlicher terrestrischer Fotografien beschrĂ€nkt, werden zuerst die GrĂŒnde fĂŒr das Scheitern des SfM Prozesses identifiziert. Im Gegensatz zu sequenziellen BildverbĂ€nden zeigen Bildpaare aus unterschiedlichen zeitlichen Epochen oder von unterschiedlichen Standpunkten enorme Differenzen hinsichtlich der Szenendarstellung. Dies können u.a. Unterschiede in der Beleuchtungssituation, des Aufnahmezeitpunktes oder SchĂ€den am originalen analogen Medium sein. Da fĂŒr die Merkmalszuordnung in SfM automatisiert homologe Bildpunkte in Bildpaaren bzw. Bildsequenzen gefunden werden mĂŒssen, stellen diese Bilddifferenzen die grĂ¶ĂŸte Schwierigkeit dar. Um verschiedene Verfahren der Merkmalszuordnung testen zu können, ist es notwendig einen vororientierten historischen Datensatz zu verwenden. Da solch ein Benchmark-Datensatz noch nicht existierte, werden im Rahmen der Arbeit durch manuelle Selektion homologer Bildpunkte acht historische Bildtripel (entspricht 24 Bildpaaren) orientiert, die anschließend genutzt werden, um neu publizierte Verfahren bei der Merkmalszuordnung zu evaluieren. Die ersten verwendeten Methoden, die algorithmische Verfahren zur Merkmalszuordnung nutzen (z.B. Scale Invariant Feature Transform (SIFT)), liefern nur fĂŒr wenige Bildpaare des Datensatzes zufriedenstellende Ergebnisse. Erst durch die Verwendung von Verfahren, die neuronale Netze zur Merkmalsdetektion und Merkmalsbeschreibung einsetzen, können fĂŒr einen großen Teil der historischen Bilder des Benchmark-Datensatzes zuverlĂ€ssig homologe Bildpunkte gefunden werden. Die Bestimmung der Kameraorientierung erfordert zusĂ€tzlich zur Merkmalszuordnung eine initiale SchĂ€tzung der Kamerakonstante, die jedoch im Zuge der Digitalisierung des analogen Bildes nicht mehr direkt zu ermitteln ist. Eine mögliche Lösung dieses Problems ist die Verwendung von drei Fluchtpunkten, die automatisiert im historischen Bild detektiert werden und aus denen dann die Kamerakonstante bestimmt werden kann. Die Kombination aus SchĂ€tzung der Kamerakonstante und robuster Merkmalszuordnung wird in den SfM Prozess integriert und erlaubt die Bestimmung der Kameraorientierung historischer Bilder. Auf Grundlage dieser Ergebnisse wird ein Arbeitsablauf konzipiert, der es ermöglicht, Archive mittels dieses photogrammetrischen Verfahrens direkt an 3D-Anwendungen anzubinden. Eine Suchanfrage in Archiven erfolgt ĂŒblicherweise ĂŒber Schlagworte, die dann als Metadaten dem entsprechenden Objekt zugeordnet sein mĂŒssen. Eine Suche nach einem bestimmten GebĂ€ude generiert deshalb u.a. Treffer zu Zeichnungen, GemĂ€lden, Veranstaltungen, Innen- oder Detailansichten. FĂŒr die erfolgreiche Anwendung von SfM im stadtrĂ€umlichen Kontext interessiert jedoch v.a. die fotografische Außenansicht des GebĂ€udes. WĂ€hrend die Bilder fĂŒr ein einzelnes GebĂ€ude von Hand sortiert werden können, ist dieser Prozess fĂŒr mehrere GebĂ€ude zu zeitaufwendig. Daher wird in Zusammenarbeit mit dem Competence Center for Scalable Data Services and Solutions (ScaDS) ein Ansatz entwickelt, um historische Fotografien ĂŒber BildĂ€hnlichkeiten zu filtern. Dieser ermöglicht zuverlĂ€ssig ĂŒber die Auswahl eines oder mehrerer Suchbilder die Suche nach inhaltsĂ€hnlichen Ansichten. Durch die VerknĂŒpfung der inhaltsbasierten Suche mit dem SfM Ansatz ist es möglich, automatisiert fĂŒr eine große Anzahl historischer Fotografien die Kameraparameter zu bestimmen. Das entwickelte Verfahren stellt eine deutliche Verbesserung im Vergleich zu kommerziellen und open-source SfM Standardlösungen dar. Das Ergebnis dieser Arbeit ist ein kompletter Arbeitsablauf vom Archiv bis zur Applikation, der automatisch Bilder filtert und diese orientiert. Die zu erwartende Genauigkeit von wenigen Metern fĂŒr die Kameraposition sind ausreichend fĂŒr die dargestellten Anwendungen in dieser Arbeit, bieten aber weiteres Verbesserungspotential. Eine Anbindung an Archive, die ĂŒber Schnittstellen automatisch Fotografien und Positionen austauschen soll, befindet sich bereits in der Entwicklung. Dadurch ist es möglich, innere und Ă€ußere Orientierungsparameter direkt von der historischen Fotografie als Metadaten abzurufen, was neue Forschungsfelder eröffnet.:1 Introduction 1 1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Historical image data and archives . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Structure-from-Motion for historical images . . . . . . . . . . . . . . . . . . . 4 1.3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Selection of images and preprocessing . . . . . . . . . . . . . . . . . . 5 1.3.3 Feature detection, feature description and feature matching . . . . . . 6 1.3.3.1 Feature detection . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3.2 Feature description . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3.4 Geometric verification and robust estimators . . . . . . . . . 13 1.3.3.5 Joint methods . . . . . . . . . . . . . . . .

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    A graph-based approach for the retrieval of multi-modality medical images

    Get PDF
    Medical imaging has revolutionised modern medicine and is now an integral aspect of diagnosis and patient monitoring. The development of new imaging devices for a wide variety of clinical cases has spurred an increase in the data volume acquired in hospitals. These large data collections offer opportunities for search-based applications in evidence-based diagnosis, education, and biomedical research. However, conventional search methods that operate upon manual annotations are not feasible for this data volume. Content-based image retrieval (CBIR) is an image search technique that uses automatically derived visual features as search criteria and has demonstrable clinical benefits. However, very few studies have investigated the CBIR of multi-modality medical images, which are making a monumental impact in healthcare, e.g., combined positron emission tomography and computed tomography (PET-CT) for cancer diagnosis. In this thesis, we propose a new graph-based method for the CBIR of multi-modality medical images. We derive a graph representation that emphasises the spatial relationships between modalities by structurally constraining the graph based on image features, e.g., spatial proximity of tumours and organs. We also introduce a graph similarity calculation algorithm that prioritises the relationships between tumours and related organs. To enable effective human interpretation of retrieved multi-modality images, we also present a user interface that displays graph abstractions alongside complex multi-modality images. Our results demonstrated that our method achieved a high precision when retrieving images on the basis of tumour location within organs. The evaluation of our proposed UI design by user surveys revealed that it improved the ability of users to interpret and understand the similarity between retrieved PET-CT images. The work in this thesis advances the state-of-the-art by enabling a novel approach for the retrieval of multi-modality medical images
    • 

    corecore