22,518 research outputs found

    Consistent approximations of the zeno behaviour in affine-type switched dynamic systems

    Get PDF
    This paper proposes a new theoretic approach to a specific interaction of continuous and discrete dynamics in switched control systems known as a Zeno behaviour. We study executions of switched control systems with affine structure that admit infinitely many discrete transitions on a finite time interval. Although the real world processes do not present the corresponding behaviour, mathematical models of many engineering systems may be Zeno due to the used formal abstraction. We propose two useful approximative approaches to the Zeno dynamics, namely, an analytic technique and a variational description of this phenomenon. A generic trajectory associated with the Zeno dynamics can finally be characterized as a result of a specific projection or/and an optimization procedure applied to the original dynamic model. The obtained analytic and variational techniques provide an effective methodology for constructive approximations of the general Zeno-type behaviour. We also discuss shortly some possible applications of the proposed approximation schemes

    Yet Another Tutorial of Disturbance Observer: Robust Stabilization and Recovery of Nominal Performance

    Full text link
    This paper presents a tutorial-style review on the recent results about the disturbance observer (DOB) in view of robust stabilization and recovery of the nominal performance. The analysis is based on the case when the bandwidth of Q-filter is large, and it is explained in a pedagogical manner that, even in the presence of plant uncertainties and disturbances, the behavior of real uncertain plant can be made almost similar to that of disturbance-free nominal system both in the transient and in the steady-state. The conventional DOB is interpreted in a new perspective, and its restrictions and extensions are discussed

    Global Stabilization of Triangular Systems with Time-Delayed Dynamic Input Perturbations

    Full text link
    A control design approach is developed for a general class of uncertain strict-feedback-like nonlinear systems with dynamic uncertain input nonlinearities with time delays. The system structure considered in this paper includes a nominal uncertain strict-feedback-like subsystem, the input signal to which is generated by an uncertain nonlinear input unmodeled dynamics that is driven by the entire system state (including unmeasured state variables) and is also allowed to depend on time delayed versions of the system state variable and control input signals. The system also includes additive uncertain nonlinear functions, coupled nonlinear appended dynamics, and uncertain dynamic input nonlinearities with time-varying uncertain time delays. The proposed control design approach provides a globally stabilizing delay-independent robust adaptive output-feedback dynamic controller based on a dual dynamic high-gain scaling based structure.Comment: 2017 IEEE International Carpathian Control Conference (ICCC
    corecore