423,894 research outputs found

    Robust stability of second-order systems

    Get PDF
    A feedback linearization technique is used in conjunction with passivity concepts to design robust controllers for space robots. It is assumed that bounded modeling uncertainties exist in the inertia matrix and the vector representing the coriolis, centripetal, and friction forces. Under these assumptions, the controller guarantees asymptotic tracking of the joint variables. A Lagrangian approach is used to develop a dynamic model for space robots. Closed-loop simulation results are illustrated for a simple case of a single link planar manipulator with freely floating base

    Modeling the Portfolio of Capabilities for Product Variant Creation and Assessment

    Get PDF
    Choice navigation, solution space development and robust process design are the three mass customization key competences. The first and second are often mapped into product configuration or design automation systems and aim at specifying or co-designing a suitable product variant. Robust process design targets at managing a well-known but flexible supply network. As part of this, the portfolio of capabilities describes limitations to the solution space and is a valuable source of knowledge containing general design guidelines and specific manufacturing restrictions, like NC travelling distances, as well as availabilities of whole production processes. This article contributes a modeling approach that bridges solutions space development and modeling the portfolio of capabilities. Therefore, a knowledge-based engineering system is extended by a capability model of according production machines that allows to automatically check new product variants against the portfolio of capabilities and to estimate setup efforts and expenses of process changes

    Application of the LQG/LTR technique to robust controller synthesis for a large flexible space antenna

    Get PDF
    The problem of synthesizing a robust controller is considered for a large, flexible space-based antenna by using the linear-quadratic-Gaussian (LQG)/loop transfer recovery (LTR) method. The study is based on a finite-element model of the 122-m hoop/column antenna, which consists of three rigid-body rotational modes and the first 10 elastic modes. A robust compensator design for achieving the required performance bandwidth in the presence of modeling uncertainties is obtained using the LQG/LTR method for loop-shaping in the frequency domain. Different sensor actuator locations are analyzed in terms of the pole/zero locations of the multivariable systems and possible best locations are indicated. The computations are performed by using the LQG design package ORACLS augmented with frequency domain singular value analysis software

    On the Caltech Experimental Large Space Structure

    Get PDF
    This paper focuses on a large space structure experiment developed at the California Institute of Technology. The main thrust of the experiment is to address the identification and robust control issues associated with large space structures by capturing their characteristics in the laboratory. The design, modeling, identification and control objectives are discussed within the paper

    Experimental experience with flexible structures

    Get PDF
    The focus is on a flexible structure experiment developed at the California Institute of Technology. The main thrust of the experiment is to address the identification and robust control issues associated with large space structures by capturing their characteristics in the laboratory. The design, modeling, identification and control objectives will be discussed. Also, the subject of uncertainty in structural plant models and the frequency shaping of performance objectives will be expounded upon. Theoretical and experimental results of control laws designed using the identified model and uncertainty descriptions will be presented

    High speed, precision motion strategies for lightweight structures

    Get PDF
    Research on space telerobotics is summarized. Adaptive control experiments on the Robotic Arm, Large and Flexible (RALF) were preformed and are documented, along with a joint controller design for the Small Articulated Manipulator (SAM), which is mounted on the RALF. A control algorithm is described as a robust decentralized adaptive control based on a bounded uncertainty approach. Dynamic interactions between SAM and RALF are examined. Unstability of the manipulator is studied from the perspective that the inertial forces generated could actually be used to more rapidly damp out the flexible manipulator's vibration. Currently being studied is the modeling of the constrained dynamics of flexible arms

    Robust on-off pulse control of flexible space vehicles

    Get PDF
    The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated
    • …
    corecore