19 research outputs found

    Quantization Adaptor for Bit-Level Deep Learning-Based Massive MIMO CSI Feedback

    Full text link
    In massive multiple-input multiple-output (MIMO) systems, the user equipment (UE) needs to feed the channel state information (CSI) back to the base station (BS) for the following beamforming. But the large scale of antennas in massive MIMO systems causes huge feedback overhead. Deep learning (DL) based methods can compress the CSI at the UE and recover it at the BS, which reduces the feedback cost significantly. But the compressed CSI must be quantized into bit streams for transmission. In this paper, we propose an adaptor-assisted quantization strategy for bit-level DL-based CSI feedback. First, we design a network-aided adaptor and an advanced training scheme to adaptively improve the quantization and reconstruction accuracy. Moreover, for easy practical employment, we introduce the expert knowledge of data distribution and propose a pluggable and cost-free adaptor scheme. Experiments show that compared with the state-of-the-art feedback quantization method, this adaptor-aided quantization strategy can achieve better quantization accuracy and reconstruction performance with less or no additional cost. The open-source codes are available at https://github.com/zhang-xd18/QCRNet.Comment: 9 pages, 8 figures, 5 tables. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notic

    A Learnable Optimization and Regularization Approach to Massive MIMO CSI Feedback

    Get PDF
    Channel state information (CSI) plays a critical role in achieving the potential benefits of massive multiple input multiple output (MIMO) systems. In frequency division duplex (FDD) massive MIMO systems, the base station (BS) relies on sustained and accurate CSI feedback from the users. However, due to the large number of antennas and users being served in massive MIMO systems, feedback overhead can become a bottleneck. In this paper, we propose a model-driven deep learning method for CSI feedback, called learnable optimization and regularization algorithm (LORA). Instead of using l1-norm as the regularization term, a learnable regularization module is introduced in LORA to automatically adapt to the characteristics of CSI. We unfold the conventional iterative shrinkage-thresholding algorithm (ISTA) to a neural network and learn both the optimization process and regularization term by end-toend training. We show that LORA improves the CSI feedback accuracy and speed. Besides, a novel learnable quantization method and the corresponding training scheme are proposed, and it is shown that LORA can operate successfully at different bit rates, providing flexibility in terms of the CSI feedback overhead. Various realistic scenarios are considered to demonstrate the effectiveness and robustness of LORA through numerical simulations
    corecore