1,295 research outputs found

    Information-Driven Adaptive Structured-Light Scanners

    Get PDF
    Sensor planning and active sensing, long studied in robotics, adapt sensor parameters to maximize a utility function while constraining resource expenditures. Here we consider information gain as the utility function. While these concepts are often used to reason about 3D sensors, these are usually treated as a predefined, black-box, component. In this paper we show how the same principles can be used as part of the 3D sensor. We describe the relevant generative model for structured-light 3D scanning and show how adaptive pattern selection can maximize information gain in an open-loop-feedback manner. We then demonstrate how different choices of relevant variable sets (corresponding to the subproblems of locatization and mapping) lead to different criteria for pattern selection and can be computed in an online fashion. We show results for both subproblems with several pattern dictionary choices and demonstrate their usefulness for pose estimation and depth acquisition.United States. Office of Naval Research (Grant N00014-09-1-1051)United States. Army Research Office (Grant W911NF-11- 1-0391)United States. Office of Naval Research (Grant N00014- 11-1-0688

    Single-pixel, single-photon three-dimensional imaging

    Get PDF
    The 3D recovery of a scene is a crucial task with many real-life applications such as self-driving vehicles, X-ray tomography and virtual reality. The recent development of time-resolving detectors sensible to single photons allowed the recovery of the 3D information at high frame rate with unprecedented capabilities. Combined with a timing system, single-photon sensitive detectors allow the 3D image recovery by measuring the Time-of-Flight (ToF) of the photons scattered back by the scene with a millimetre depth resolution. Current ToF 3D imaging techniques rely on scanning detection systems or multi-pixel sensor. Here, we discuss an approach to simplify the hardware complexity of the current 3D imaging ToF techniques using a single-pixel, single-photon sensitive detector and computational imaging algorithms. The 3D imaging approaches discussed in this thesis do not require mechanical moving parts as in standard Lidar systems. The single-pixel detector allows to reduce the pixel complexity to a single unit and offers several advantages in terms of size, flexibility, wavelength range and cost. The experimental results demonstrate the 3D image recovery of hidden scenes with a subsecond acquisition time, allowing also non-line-of-sight scenes 3D recovery in real-time. We also introduce the concept of intelligent Lidar, a 3D imaging paradigm based uniquely on the temporal trace of the return photons and a data-driven 3D retrieval algorithm

    Calibration of scanning laser range cameras with applications for machine vision

    Get PDF
    Range images differ from conventional reflectance images because they give direct 3-D information about a scene. The last five years have seen a substantial increase in the use of range imaging technology in the areas of robotics, hazardous materials handling, and manufacturing. This has been fostered by a cost reduction of reliable range scanning products, resulting primarily from advanced development of computing resources. In addition, the improved performance of modern range cameras has spurred an interest in new calibrations which take account of their unconventional design. Calibration implies both modeling and a numerical technique for finding parameters within the model. Researchers often refer to spherical coordinates when modeling range cameras. Spherical coordinates, however, only approximate the behavior of the cameras. We seek, therefore, a more analytical approach based on analysis of the internal scanning mechanisms of the cameras. This research demonstrates that the Householder matrix [14] is a better tool for modeling these devices. We develop a general calibration technique which is both accurate and simple to implement. The method proposed here compares target points taken from range images to the known geometry of the target. The calibration is considered complete if the two point sets can be made to match closely in a least squares sense by iteratively modifying model parameters. The literature, fortunately, is replete with numerical algorithms suited to this task. We have selected the simplex algorithm because it is particularly well suited for solving systems with many unknown parameters. In the course of this research, we implement the proposed calibration. We will find that the error in the range image data can be reduced from more that 60 mm per point rms to less than 10 mm per point. We consider this result to be a success because analysis of the results shows the residual error of 10 mm is due solely to random noise in the range values, not from calibration. This implies that accuracy is limited only by the quality of the range measuring device inside the camera

    Generative Models for Preprocessing of Hospital Brain Scans

    Get PDF
    I will in this thesis present novel computational methods for processing routine clinical brain scans. Such scans were originally acquired for qualitative assessment by trained radiologists, and present a number of difficulties for computational models, such as those within common neuroimaging analysis software. The overarching objective of this work is to enable efficient and fully automated analysis of large neuroimaging datasets, of the type currently present in many hospitals worldwide. The methods presented are based on probabilistic, generative models of the observed imaging data, and therefore rely on informative priors and realistic forward models. The first part of the thesis will present a model for image quality improvement, whose key component is a novel prior for multimodal datasets. I will demonstrate its effectiveness for super-resolving thick-sliced clinical MR scans and for denoising CT images and MR-based, multi-parametric mapping acquisitions. I will then show how the same prior can be used for within-subject, intermodal image registration, for more robustly registering large numbers of clinical scans. The second part of the thesis focusses on improved, automatic segmentation and spatial normalisation of routine clinical brain scans. I propose two extensions to a widely used segmentation technique. First, a method for this model to handle missing data, which allows me to predict entirely missing modalities from one, or a few, MR contrasts. Second, a principled way of combining the strengths of probabilistic, generative models with the unprecedented discriminative capability of deep learning. By introducing a convolutional neural network as a Markov random field prior, I can model nonlinear class interactions and learn these using backpropagation. I show that this model is robust to sequence and scanner variability. Finally, I show examples of fitting a population-level, generative model to various neuroimaging data, which can model, e.g., CT scans with haemorrhagic lesions

    Visual attention and swarm cognition for off-road robots

    Get PDF
    Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2011Esta tese aborda o problema da modelação de atenção visual no contexto de robôs autónomos todo-o-terreno. O objectivo de utilizar mecanismos de atenção visual é o de focar a percepção nos aspectos do ambiente mais relevantes à tarefa do robô. Esta tese mostra que, na detecção de obstáculos e de trilhos, esta capacidade promove robustez e parcimónia computacional. Estas são características chave para a rapidez e eficiência dos robôs todo-o-terreno. Um dos maiores desafios na modelação de atenção visual advém da necessidade de gerir o compromisso velocidade-precisão na presença de variações de contexto ou de tarefa. Esta tese mostra que este compromisso é resolvido se o processo de atenção visual for modelado como um processo auto-organizado, cuja operação é modulada pelo módulo de selecção de acção, responsável pelo controlo do robô. Ao fechar a malha entre o processo de selecção de acção e o de percepção, o último é capaz de operar apenas onde é necessário, antecipando as acções do robô. Para fornecer atenção visual com propriedades auto-organizadas, este trabalho obtém inspiração da Natureza. Concretamente, os mecanismos responsáveis pela capacidade que as formigas guerreiras têm de procurar alimento de forma auto-organizada, são usados como metáfora na resolução da tarefa de procurar, também de forma auto-organizada, obstáculos e trilhos no campo visual do robô. A solução proposta nesta tese é a de colocar vários focos de atenção encoberta a operar como um enxame, através de interacções baseadas em feromona. Este trabalho representa a primeira realização corporizada de cognição de enxame. Este é um novo campo de investigação que procura descobrir os princípios básicos da cognição, inspeccionando as propriedades auto-organizadas da inteligência colectiva exibida pelos insectos sociais. Logo, esta tese contribui para a robótica como disciplina de engenharia e para a robótica como disciplina de modelação, capaz de suportar o estudo do comportamento adaptável.Esta tese aborda o problema da modelação de atenção visual no contexto de robôs autónomos todo-o-terreno. O objectivo de utilizar mecanismos de atenção visual é o de focar a percepção nos aspectos do ambiente mais relevantes à tarefa do robô. Esta tese mostra que, na detecção de obstáculos e de trilhos, esta capacidade promove robustez e parcimónia computacional. Estas são características chave para a rapidez e eficiência dos robôs todo-o-terreno. Um dos maiores desafios na modelação de atenção visual advém da necessidade de gerir o compromisso velocidade-precisão na presença de variações de contexto ou de tarefa. Esta tese mostra que este compromisso é resolvido se o processo de atenção visual for modelado como um processo auto-organizado, cuja operação é modulada pelo módulo de selecção de acção, responsável pelo controlo do robô. Ao fechar a malha entre o processo de selecção de acção e o de percepção, o último é capaz de operar apenas onde é necessário, antecipando as acções do robô. Para fornecer atenção visual com propriedades auto-organizadas, este trabalho obtém inspi- ração da Natureza. Concretamente, os mecanismos responsáveis pela capacidade que as formi- gas guerreiras têm de procurar alimento de forma auto-organizada, são usados como metáfora na resolução da tarefa de procurar, também de forma auto-organizada, obstáculos e trilhos no campo visual do robô. A solução proposta nesta tese é a de colocar vários focos de atenção encoberta a operar como um enxame, através de interacções baseadas em feromona. Este trabalho representa a primeira realização corporizada de cognição de enxame. Este é um novo campo de investigação que procura descobrir os princípios básicos da cognição, ins- peccionando as propriedades auto-organizadas da inteligência colectiva exibida pelos insectos sociais. Logo, esta tese contribui para a robótica como disciplina de engenharia e para a robótica como disciplina de modelação, capaz de suportar o estudo do comportamento adaptável.Fundação para a Ciência e a Tecnologia (FCT,SFRH/BD/27305/2006); Laboratory of Agent Modelling (LabMag

    Correction of Errors in Time of Flight Cameras

    Get PDF
    En esta tesis se aborda la corrección de errores en cámaras de profundidad basadas en tiempo de vuelo (Time of Flight - ToF). De entre las más recientes tecnologías, las cámaras ToF de modulación continua (Continuous Wave Modulation - CWM) son una alternativa prometedora para la creación de sensores compactos y rápidos. Sin embargo, existen gran variedad de errores que afectan notablemente la medida de profundidad, poniendo en compromiso posibles aplicaciones. La corrección de dichos errores propone un reto desafiante. Actualmente, se consideran dos fuentes principales de error: i) sistemático y ii) no sistemático. Mientras que el primero admite calibración, el último depende de la geometría y el movimiento relativo de la escena. Esta tesis propone métodos que abordan i) la distorsión sistemática de profundidad y dos de las fuentes de error no sistemático más relevantes: ii.a) la interferencia por multicamino (Multipath Interference - MpI) y ii.b) los artefactos de movimiento. La distorsión sistemática de profundidad en cámaras ToF surge principalmente debido al uso de señales sinusoidales no perfectas para modular. Como resultado, las medidas de profundidad aparecen distorsionadas, pudiendo ser reducidas con una etapa de calibración. Esta tesis propone un método de calibración basado en mostrar a la cámara un plano en diferentes posiciones y orientaciones. Este método no requiere de patrones de calibración y, por tanto, puede emplear los planos, que de manera natural, aparecen en la escena. El método propuesto encuentra una función que obtiene la corrección de profundidad correspondiente a cada píxel. Esta tesis mejora los métodos existentes en cuanto a precisión, eficiencia e idoneidad. La interferencia por multicamino surge debido a la superposición de la señal reflejada por diferentes caminos con la reflexión directa, produciendo distorsiones que se hacen más notables en superficies convexas. La MpI es la causa de importantes errores en la estimación de profundidad en cámaras CWM ToF. Esta tesis propone un método que elimina la MpI a partir de un solo mapa de profundidad. El enfoque propuesto no requiere más información acerca de la escena que las medidas ToF. El método se fundamenta en un modelo radio-métrico de las medidas que se emplea para estimar de manera muy precisa el mapa de profundidad sin distorsión. Una de las tecnologías líderes para la obtención de profundidad en imagen ToF está basada en Photonic Mixer Device (PMD), la cual obtiene la profundidad mediante el muestreado secuencial de la correlación entre la señal de modulación y la señal proveniente de la escena en diferentes desplazamientos de fase. Con movimiento, los píxeles PMD capturan profundidades diferentes en cada etapa de muestreo, produciendo artefactos de movimiento. El método propuesto en esta tesis para la corrección de dichos artefactos destaca por su velocidad y sencillez, pudiendo ser incluido fácilmente en el hardware de la cámara. La profundidad de cada píxel se recupera gracias a la consistencia entre las muestras de correlación en el píxel PMD y de la vecindad local. Este método obtiene correcciones precisas, reduciendo los artefactos de movimiento enormemente. Además, como resultado de este método, puede obtenerse el flujo óptico en los contornos en movimiento a partir de una sola captura. A pesar de ser una alternativa muy prometedora para la obtención de profundidad, las cámaras ToF todavía tienen que resolver problemas desafiantes en relación a la corrección de errores sistemáticos y no sistemáticos. Esta tesis propone métodos eficaces para enfrentarse con estos errores
    corecore