2,985 research outputs found

    Piezoelectric devices for vibration suppression: Modeling and application to a truss structure

    Get PDF
    For a space structure assembled from truss members, an effective way to control the structure may be to replace the regular truss elements by active members. The active members play the role of load carrying elements as well as actuators. A piezo strut, made of a stack of piezoceramics, may be an ideal active member to be integrated into a truss space structure. An electrically driven piezo strut generates a pair of forces, and is considered as a two-point actuator in contrast to a one-point actuator such as a thruster or a shaker. To achieve good structural vibration control, sensing signals compatible to the control actuators are desirable. A strain gage or a piezo film with proper signal conditioning to measure member strain or strain rate, respectively, are ideal control sensors for use with a piezo actuator. The Phase 0 CSI Evolutionary Model (CEM) at NASA Langley Research Center used cold air thrusters as actuators to control both rigid body motions and flexible body vibrations. For the Phase 1 and 2 CEM, it is proposed to use piezo struts to control the flexible modes and thrusters to control the rigid body modes. A tenbay truss structure with active piezo struts is built to study the modeling, controller designs, and experimental issues. In this paper, the tenbay structure with piezo active members is modelled using an energy method approach. Decentralized and centralized control schemes are designed and implemented, and preliminary analytical and experimental results are presented

    Smart microgrids and virtual power plants in a hierarchical control structure

    Get PDF
    In order to achieve a coordinated integration of distributed energy resources in the electrical network, an aggregation of these resources is required. Microgrids and virtual power plants (VPPs) address this issue. Opposed to VPPs, microgrids have the functionality of islanding, for which specific control strategies have been developed. These control strategies are classified under the primary control strategies. Microgrid secondary control deals with other aspects such as resource allocation, economic optimization and voltage profile improvements. When focussing on the control-aspects of DER, VPP coordination is similar with the microgrid secondary control strategy, and thus, operates at a slower time frame as compared to the primary control and can take full advantage of the available communication provided by the overlaying smart grid. Therefore, the feasibility of the microgrid secondary control for application in VPPs is discussed in this paper. A hierarchical control structure is presented in which, firstly, smart microgrids deal with local issues in a primary and secondary control. Secondly, these microgrids are aggregated in a VPP that enables the tertiary control, forming the link with the electricity markets and dealing with issues on a larger scale

    A Comprehensive Review of Control Strategies and Optimization Methods for Individual and Community Microgrids

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Community Microgrid offers effective energy harvesting from distributed energy resources and efficient energy consumption by employing an energy management system (EMS). Therefore, the collaborative microgrids are essentially required to apply an EMS, underlying an operative control strategy in order to provide an efficient system. An EMS is apt to optimize the operation of microgrids from several points of view. Optimal production planning, optimal demand-side management, fuel and emission constraints, the revenue of trading spinning and non-spinning reserve capacity can effectively be managed by EMS. Consequently, the importance of optimization is explicit in microgrid applications. In this paper, the most common control strategies in the microgrid community with potential pros and cons are analyzed. Moreover, a comprehensive review of single objective and multi-objective optimization methods is performed by considering the practical and technical constraints, uncertainty, and intermittency of renewable energies sources. The Pareto-optimal solution as the most popular multi-objective optimization approach is investigated for the advanced optimization algorithms. Eventually, feature selection and neural network-based clustering algorithms in order to analyze the Pareto-optimal set are introduced.This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (MICINN)–Agencia Estatal de Investigación (AEI), and by the European Regional Development Funds (ERDF), a way of making Europe, under Grant PGC2018-098946-B-I00 funded by MCIN/AEI/10.13039/501100011033/.Peer ReviewedPostprint (published version

    Deep neural learning based distributed predictive control for offshore wind farm using high fidelity LES data

    Get PDF
    The paper explores the deep neural learning (DNL) based predictive control approach for offshore wind farm using high fidelity large eddy simulations (LES) data. The DNL architecture is defined by combining the Long Short-Term Memory (LSTM) units with Convolutional Neural Networks (CNN) for feature extraction and prediction of the offshore wind farm. This hybrid CNN-LSTM model is developed based on the dynamic models of the wind farm and wind turbines as well as higher-fidelity LES data. Then, distributed and decentralized model predictive control (MPC) methods are developed based on the hybrid model for maximizing the wind farm power generation and minimizing the usage of the control commands. Extensive simulations based on a two-turbine and a nine-turbine wind farm cases demonstrate the high prediction accuracy (97% or more) of the trained CNN-LSTM models. They also show that the distributed MPC can achieve up to 38% increase in power generation at farm scale than the decentralized MPC. The computational time of the distributed MPC is around 0.7s at each time step, which is sufficiently fast as a real-time control solution to wind farm operations

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107
    corecore