13 research outputs found

    Adaptive Predictive Deadbeat Current Control of Single-Phase Multi-tuned Shunt Hybrid Active Power Filters

    Get PDF
    This paper suggests an adaptive predictive deadbeat current control method for single-phase multi-tuned shunt hybrid active power filters (HAPFs) to improve the power quality of single-phase and three-phase four-wire utility grids. The HAPF structure eliminates the resonance between the passive power filter and the grid impedance. Furthermore, it can be integrated into passive filters to enhance their filtering performance. In this paper, a digital algorithm is proposed for managing the performance of each converter leg accurately. To do so, an exact model of the high-order system is developed, and the transfer function of the plant is calculated in continuous and discrete time domains. Then, a predictive deadbeat technique for HAPF current control is presented, which benefits from high accuracy, fast dynamics, and low sensitivity to system parameter mismatches. Extensive simulation and experimental tests are conducted and the results match well to confirm the success and appropriate performance of the overall system. Also, performance comparison with conventional solutions demonstrates the superiority of the suggested filtering technique

    Virtual Instrument of Harmonics Detection Based on Neural Network Adaptive Filters

    Get PDF
    This study investigated the adaptive detection principle based on a single artificial neuron, and constructed a method for detecting harmonics using the artificial neural network technique. Based on the established method, and by comprehensively processing the obtained harmonics data using the LabVIEW software-developing environment of the virtual instrument, the harmonic waves were detected and analyzed. Finally, the analysis of current ball crusher harmonics verified that the designed system was effective

    Development of Robust Control Schemes with New Estimation Algorithms for Shunt Active Power Filter

    Get PDF
    The widespread use of power electronics in industrial, commercial and even residential electrical equipments causes deterioration of the quality of the electric power supply with distortion of the supply voltage. This has led to the development of more stringent requirements regarding harmonic current generation, as are found in standards such as IEEE-519. Power Quality is generally meant to measure of an ideal power supply system. Shunt active power filter (SAPF) is a viable solution for Power Quality enhancement, in order to comply with the standard recommendations. The dynamic performance of SAPF is mainly dependent on how quickly and how accurately the harmonic components are extracted from the load current. Therefore, a fast and accurate estimation algorithm for the detection of reference current signal along with an effective current control technique is needed in order for a SAPF to perform the harmonic elimination successfully. Several control strategies of SAPF have been proposed and implemented. But, still there is a lot of scope on designing new estimation algorithms to achieve fast and accurate generation of reference current signal in SAPF. Further, there is a need of development of efficient robust control algorithms that can be robust in face parametric uncertainties in the power system yielding improvement in power quality more effectively in terms of tracking error reduction and efficient current harmonics mitigation. The work described in the thesis involves development of a number of new current control techniques along with new reference current generation schemes in SAPF. Two current control techniques namely a hysteresis current control (HCC) and sliding mode control (SMC) implemented with a new reference current generation scheme are proposed. This reference generation approach involves a Proportional Integral (PI) controller loop and exploits the estimation of the in phase fundamental components of distorted point of common coupling (PCC) voltages by using Kalman Filter (KF) algorithm. The KF-HCC based SAPF is found to be very simple in realization and performs well even under grid perturbations. But the slow convergence rate of KF leads towards an ineffective reference generation and hence harmonics cancellation is not perfect. Therefore, a SMC based SAPF is implemented with a faster reference scheme based on the proposed Robust Extended Complex Kalman Filter (RECKF) algorithm and the efficacy of this RECKF-SMC is compared with other variants of Kalman Filter such as KF, Extended Kalman Filter (EKF) and Extended Complex Kalman Filter (ECKF) employing simulations as well as real-time simulations using an Opal-RT Real-Time digital Simulator. The RECKF-SMC based SAPF is found to be more effective as compared to the KF-HCC, KF-SMC, EKF-SMC and ECKF-SMC. Subsequently, predictive control techniques namely Dead Beat Control (DBC) and Model Predictive Control (MPC) are proposed in SAPF along with an improved reference current generation scheme based on the proposed RECKF. This reference scheme is devoid of PI controller loop and can self-regulate the dc-link voltage. Both RECKF-DBC and RECKF-MPC approaches use a model of the SAPF system to predict its future behavior and select the most appropriate control action based on an optimality criterion. However, RECKF-DBC is more sensitive to load uncertainties. Also, a better compensation performance of RECKF-MPC is observed from the simulation as well as real-time simulation results. Moreover, to study the efficacy of this RECKF-MPC over PI-MPC, a comparative assessment has been performed using both steady state as well as transient state conditions. From the simulation and real-time simulation results, it is observed that the proposed RECKF-MPC outperforms PI-MPC. The thesis also proposed an optimal Linear Quadratic Regulator (LQR) with an advanced reference current generation strategy based on RECKF. This RECKF-LQR based SAPF has better tracking and disturbance rejection capability and hence RECKF-LQR is found to be more efficient as compared to RECKF-SMC, RECKF-DBC and RECKF-MPC approaches. Subsequently, two robust control approaches namely Linear Quadratic Gaussian (LQG) servo control and H∞ control are proposed in SAPF with highly improved reference generation schemes based on RECKF. These control strategies are designed with the purpose of achieving stability, high disturbance rejection and high level of harmonics cancellation. From simulation results, they are not only found to be robust against different load parameters, but also satisfactory THD results have been achieved in SAPF. A prototype experimental set up has been developed in the Laboratory with a dSPACE-1104 computing platform to verify their robustness. From both the simulation and experimentation, it is observed that the proposed RECKF-H∞ control approach to design a SAPF is found to be more robust as compared to the RECKF-LQG servo control approach in face parametric uncertainties due to load perturbations yielding improvement in power quality in terms of tracking error reduction and efficient current harmonics mitigation. Further, there is no involvement of any voltage sensor in this realization of RECKF-H∞ based SAPF resulting a more reliable and inexpensive SAPF system. Therefore, superiority of proposed RECKF-H∞ is proved amongst all the proposed control strategies of SAPF

    Harmonics and Phasor Estimation for a Distorted Power System Signal

    Get PDF
    The controlling, operating and monitoring of electric devices has been possible because of the knowledge of power system parameters. The relay functionality in power systems is influenced by the two vital power system parameters which are frequency and harmonics. Hence in power systems, phasor estimation is of utmost importance. These computations not only facilitate realtime state estimation, but also improve protection schemes. However, in the presence of power frequency deviation, the phasor undergoes rotation in the complex plane. Interconnection of power grids and distributed generation systems becomes difficult because of this phenomenon. Hence, in this report different algorithms are studied and implemented for the estimation of phasor. The parameters estimated are limited to voltage amplitude and phase, change of frequency and rate of change of frequency. In this thesis, Singular Value Decomposition (SVD) technique and Recursive Least Square (RLS) algorithms are used to estimate the amplitude and phase for different harmonics present in a distorted power system signal. Simple DFT algorithm is used to estimate the phasor variation, change of frequency and rate of change of frequency when deviated from the nominal frequency

    Small-Signal Modeling of the PVR-Based AD Scheme and Controller Design for Three-Phase Standalone DG System

    Get PDF

    An Enhanced Power Sharing Scheme for Voltage unbalance and harmonics compensation in an islanded AC microgrid

    Get PDF

    Smart Transformer-Fed Variable Frequency Distribution Grid

    Get PDF

    Addressing control and capacitor voltage regulation challenges in multilevel power electronic converters

    Get PDF
    Multilevel power electronic converters are the current industry solutions for applications that demand medium voltage, reasonable efficiency, and high power quality. The proper operation of these types of power converters requires special control, modulation methods, and capacitor voltage regulation techniques. Both developing capacitor voltage regulation methods and addressing their associated issues with such fall within the primary focus of this dissertation. In this dissertation an investigation was conducted on the capacitor voltage regulation constraints in cascaded H-bridge multilevel converters with a staircase output voltage waveform. In the proposed method, the harmonic elimination technique is used to determine the switching angles. A constraint was then derived to identify modulation those indices that lead to voltage regulation of the capacitor. This constraint can be used in optimization problems for harmonic minimization to guarantee capacitor voltage regulation in these types of converters. Furthermore, a capacitor voltage regulation method was developed using redundant state selection for a flying capacitor active rectifier. This method reduces the number of switching instances by using both online and offline state selection procedure. Additionally, a start-up procedure is proposed that pre-charges the all of capacitors in the rectifier to both avoid overstressing the switches and obtain a smoother start-up. Finally, a flexible capacitor voltage regulation method is proposed that provides the ability to control the voltage of the capacitors in both cascaded H-bridge and hybrid multilevel converters. In this method, the capacitor voltage in each individual H-bridge cell is independently regulated by controlling the active power of each cell

    Controle Preditivo Baseado em Modelo na Compensação Dinâmica do Reativo com Filtro Híbrido.

    Get PDF
    Este trabalho propõe a utilização do controle preditivo baseado em modelo (MPC) para controle dinâmico da potência reativa de um filtro híbrido. O equipamento é composto por um filtro ativo em série com um banco de capacitores. A parte ativa, utiliza um filtro LCL na saída do inversor para eliminar o chaveamento e controlar a tensão nos terminais do banco de capacitores. Um modelo matemático do filtro híbrido é utilizado para aplicar o MPC no controle da potência reativa fornecida pelo equipamento. O MPC, por sua vez, utiliza um modelo matemático para prever o comportamento do sistema e otimizar o problema de controle. Entretanto, erros nos parâmetros do modelo, podem causar desvios no controle da potência reativa fornecida. Por este motivo, esse trabalho também propõe um algoritmo baseado em filtros adaptativos para estimar as principais impedâncias do equipamento. Os resultados práticos e de simulação obtidos mostram a viabilidade de aplicação do MPC no controle da potência reativa do filtro híbrido com boa resposta dinâmica, enquanto o algoritmo de estimação garante o seu desempenho em regime permanente evitando erros causados por incertezas de parâmetros
    corecore