1,875 research outputs found

    To develop an efficient variable speed compressor motor system

    Get PDF
    This research presents a proposed new method of improving the energy efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of VSD are reviewed with emphasis on the efficiency and power losses associated with the operation of the variable speed compressor motor drive, particularly at low speed operation.The efficiency of induction motor when operated at rated speed and load torque is high. However at low load operation, application of the induction motor at rated flux will cause the iron losses to increase excessively, hence its efficiency will reduce dramatically. To improve this efficiency, it is essential to obtain the flux level that minimizes the total motor losses. This technique is known as an efficiency or energy optimization control method. In practice, typical of the compressor load does not require high dynamic response, therefore improvement of the efficiency optimization control that is proposed in this research is based on scalar control model.In this research, development of a new neural network controller for efficiency optimization control is proposed. The controller is designed to generate both voltage and frequency reference signals imultaneously. To achieve a robust controller from variation of motor parameters, a real-time or on-line learning algorithm based on a second order optimization Levenberg-Marquardt is employed. The simulation of the proposed controller for variable speed compressor is presented. The results obtained clearly show that the efficiency at low speed is significant increased. Besides that the speed of the motor can be maintained. Furthermore, the controller is also robust to the motor parameters variation. The simulation results are also verified by experiment

    A general magnetic-energy-based torque estimator: validation via a permanent-magnet motor drive

    Get PDF
    This paper describes the use of the current–flux-linkage (ipsii{-}psi ) diagram to validate the performance of a general magnetic-energy-based torque estimator. An early step in the torque estimation is the use of controller duty cycles to reconstruct the average phase-voltage waveform during each pulsewidth-modulation (PWM) switching period. Samples over the fundamental period are recorded for the estimation of the average torque. The fundamental period may not be an exact multiple of the sample time. For low speed, the reconstructed voltage requires additional compensation for inverter-device losses. Experimental validation of this reconstructed waveform with the actual PWM phase-voltage waveform is impossible due to the fact that one is PWM in nature and the other is the average value during the PWM period. A solution to this is to determine the phase flux-linkage using each waveform and then plot the resultant ipsii{-}psi loops. The torque estimation is based on instantaneous measurements and can therefore be applied to any electrical machine. This paper includes test results for a three-phase interior permanent-magnet brushless ac motor operating with both sinusoidal and nonsinusoidal current waveforms

    Vector Control of Asynchronous Motor of Drive Train Using Speed Controller H∞

    Get PDF
    This study proposes the speed control of an asynchronous motor (AM) using the Antiwindup design. First, the conventional vector control based on proportional-integral (PI) controllers is developed for a constant speed set point. Then, a driving cycle is based on measurements on the Safi/Rabat motorway in Morocco using a microcontroller equipped with a GPS device. The collected practical speed is used as a speed reference for conventional vector control. The /Antiwindup controller of the direct rotor flow-oriented control is used to improve the performance of conventional vector control and optimize the energy consumption of the drive train. The effectiveness of the proposed control scheme is verified by numerical simulation. The results of the numerical validation of the proposed scheme showed good performance compared to conventional vector control. The speed control systems are analyzed for different operating conditions. These control strategies are simulated in the MATLAB/SIMULINK environment. The simulation results of the improved vector control of the Asynchronous Machine (AM) are used to validate this optimization approach in the dynamic regime, followed by a comparative analysis to evaluate the performance and effectiveness of the proposed approach. A practical model based on a TMS320F28379D embedded board and its reduced voltage inverter (24V) is used to implement the proposed method and verify the simulation results. Doi: 10.28991/ESJ-2022-06-04-012 Full Text: PD

    Role of optimization algorithms based fuzzy controller in achieving induction motor performance enhancement.

    Get PDF
    Three-phase induction motors (TIMs) are widely used for machines in industrial operations. As an accurate and robust controller, fuzzy logic controller (FLC) is crucial in designing TIMs control systems. The performance of FLC highly depends on the membership function (MF) variables, which are evaluated by heuristic approaches, leading to a high processing time. To address these issues, optimisation algorithms for TIMs have received increasing interest among researchers and industrialists. Here, we present an advanced and efficient quantum-inspired lightning search algorithm (QLSA) to avoid exhaustive conventional heuristic procedures when obtaining MFs. The accuracy of the QLSA based FLC (QLSAF) speed control is superior to other controllers in terms of transient response, damping capability and minimisation of statistical errors under diverse speeds and loads. The performance of the proposed QLSAF speed controller is validated through experiments. Test results under different conditions show consistent speed responses and stator currents with the simulation results

    Development and Implementation of Some Controllers for Performance Enhancement and Effective Utilization of Induction Motor Drive

    Get PDF
    The technological development in the field of power electronics and DSP technology is rapidly changing the aspect of drive technology. Implementations of advanced control strategies like field oriented control, linearization control, etc. to AC drives with variable voltage, and variable frequency source is possible because of the advent of high modulating frequency PWM inverters. The modeling complexity in the drive system and the subsequent requirement for modern control algorithms are being easily taken care by high computational power, low-cost DSP controllers. The present work is directed to study, design, development, and implementation of various controllers and their comparative evaluations to identify the proper controller for high-performance induction motor (IM) drives. The dynamic modeling for decoupling control of IM is developed by making the flux and torque decoupled. The simulation is carried out in the stationary reference frame with linearized control based on state-space linearization technique. Further, comprehensive and systematic design procedures are derived to tune the PI controllers for both electrical and mechanical subsystems. However, the PI-controller performance is not satisfactory under various disturbances and system uncertainties. Also, precise mathematical model, gain values, and continuous tuning are required for the controller design to obtain high performance. Thus, to overcome these drawbacks, an adapted control strategy based on Adaptive Neuro-Fuzzy Inference System (ANFIS) based controller is developed and implemented in real-time to validate different control strategies. The superiority of the proposed controller is analyzed and is contrasted with the conventional PI controller-based linearized IM drive. The simplified neuro-fuzzy control (NFC) integrates the concept of fuzzy logic and neural network structure like conventional NFC, but it has the advantages of simplicity and improved computational efficiency over conventional NFC as the single input introduced here is an error instead of two inputs error and change in error as in conventional NFC. This structure makes the proposed NFC robust and simple as compared to conventional NFC and thus, can be easily applied to real-time industrial applications. The proposed system incorporated with different control methods is also validated with extensive experimental results using DSP2812. The effectiveness of the proposed method using feedback linearization of IM drive is investigated in simulation as well as in experiment with different working modes. It is evident from the comparative results that the system performance is not deteriorated using proposed simplified NFC as compared to the conventional NFC, rather it shows superior performance over PI-controller-based drive. A hybrid fuel cell (FC) supply system to deliver the power demanded by the feedback linearization (FBL) based IM drive is designed and implemented. The modified simple hybrid neuro-fuzzy sliding-mode control (NFSMC) incorporated with the intuitive FBL substantially reduces torque chattering and improves speed response, giving optimal drive performance under system uncertainties and disturbances. This novel technique also has the benefit of reduced computational burden over conventional NFSMC and thus, suitable for real-time industrial applications. The parameters of the modified NFC is tuned by an adaptive mechanism based on sliding-mode control (SMC). A FC stack with a dc/dc boost converter is considered here as a separate external source during interruption of main supply for maintaining the supply to the motor drive control through the inverter, thereby reducing the burden and average rating of the inverter. A rechargeable battery used as an energy storage supplements the FC during different operating conditions of the drive system. The effectiveness of the proposed method using FC-based linearized IM drive is investigated in simulation, and the efficacy of the proposed controller is validated in real-time. It is evident from the results that the system provides optimal dynamic performance in terms of ripples, overshoot, and settling time responses and is robust in terms of parameters variation and external load

    Energy Optimal Control of Induction Motor Drives

    Get PDF

    New Optimal High Efficiency Dsp-based Digital Controller Design For Super High-speed Permanent Magnet Synchronous Motor

    Get PDF
    This dissertation investigates digital controller and switch mode power supply design for super high-speed permanent magnet synchronous motors (PMSM). The PMSMs are a key component for the miniaturic cryocooler that is currently under development at the University of Central Florida with support from NASA Kennedy Space Center and the Florida Solar Energy Center. Advanced motor design methods, control strategies, and rapid progress in semiconductor technology enables production of a highly efficient digital controller. However, there are still challenges for such super high-speed controller design because of its stability, high-speed, variable speed operation, and required efficiency over a wide speed range. Currently, limited research, and no commercial experimental analysis, is available concerning such motors and their control system design. The stability of a super high-speed PMSM is an important issue particularly for open-loop control, given that PMSM are unstable after exceeding a certain applied frequency. In this dissertation, the stability of super high-speed PMSM is analyzed and some design suggestions are given to maximize this parameter. For ordinary motors, the V/f control curve is a straight line with a boost voltage because the stator resistance is negligible and only has a significant effect around the DC frequency. However, for the proposed super high-speed PMSM the situation is quite different because of the motor\u27s size. The stator resistance is quite large compared with the stator reactive impedance and cannot be neglected when employing constant a V/f control method. The challenge is to design an optimal constant V/f control scheme to raise efficiency with constant V/f control. In the development, test systems and prototype boards were built and experimental results confirmed the effectiveness of the dissertation system

    Direct Torque Control of Permanent Magnet Synchronous Motors

    Get PDF
    corecore