34 research outputs found

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Novel Lexicographic MPC for Loss Optimized Torque Control of Nonlinear PMSM

    Get PDF

    RECENT TECHNIQUES ON OBSERVER DESIGN FOR DISTURBANCE ESTIMATION AND REJECTION IN PERMANENT MAGNET SYNCHRONOUS MOTORS

    Get PDF
    Permanent magnet synchronous machines (PMSMs) (either motor or generator) have attracted attention of research community comparing to other types of AC machines in the recent two decades. PMSMs are preferable than other AC machines in terms of large power-factor, broad speed of operation, compact proportions, and effective operation. Unfortunately, different sources of nonlinearities, model uncertainties, and external perturbations determine severity in a design of accurate speed control scheme for PMSMs. In the era of developing science and technologies, many advanced control solutions are proposed to control PMSMs. Although new solutions show their advantages comparing to traditional methods in terms of performance evaluation, practical realization of those algorithms could require expensive hardware with high computational capabilities. Furthermore, people in industry with less knowledge about the motor control may experience difficulties in using such advanced controllers on their own. Traditional PI/PID control schemes still work as a major control technique in modern industry, and in motor control as well. Numerous positive facts about the PI/PID schemes make such superiority of these control schemes. Firstly, the PI/PID can be implemented easily on most industrial software and hardware components. Secondly, while its scheme has clear mechanism of operation, most industrial processes could be controlled via the PI/PID scheme. These schemes are good in terms of small number of parameters to tune and tuning process itself could be very straightforward. Finally, implementation of the PI/PID controllers would require smaller time comparing to most proposed complex control solutions. It is studied that the traditional PI/PID controllers usually cannot deal with unpredictable disturbances, which in turn leads to degraded performance of an overall control system. Inspired by the advantages and widespread application of PI/PID control structure in industry, we propose a disturbance observer based composite control scheme which uses the PI-like controller for the feedback regulation and disturbance observer for estimation of lumped disturbances presented in a PMSM control system. Under this circumstance, this thesis work proposes three different control solutions for PMSM such as High-order disturbance observer-based composite control (HDOBCC), Disturbance rejection PI (DR-PI) control, and Hierarchical optimal disturbance observer-based control (HODOBC). Furthermore, to deeply understand the similarity and difference between the traditional disturbance observer-based control (DOBC) and active-disturbance rejection control (ADRC) schemes, this thesis also presents results of unification of these two control approaches in the speed control of a PMSM. The HDOBCC as the first method proposed in this thesis is designed to improve reference speed tracking performance of a PMSM under various operational conditions. A structure of the HDOBCC comprises a fuzzy-PI controller in a feedback stabilization part and novel high-order disturbance observer in a feedforward compensation part of the speed control system. The proposed controller is designed based on the research questions such as: firstly, although a fixed gain traditional PI controller is able to present satisfactory performance at some extent, still it does not guarantee such performance when sudden disturbances occur in a system; secondly, many disturbance observers designed for a PMSM in literature consider only a load torque as a disturbance, neglecting model uncertainties and parameter variations in design stage. Therefore, the HDOBCC is proposed such that it utilizes a fuzzy approach to determine parameters of the PI controller to overcome limitations of the fixed gain PI controller. Furthermore, the proposed scheme includes a high-order disturbance observer, which estimates not only the load torque, but also disturbances due to model uncertainties and parameter variations. Moreover, extended simulation and experimental studies are conducted to affirm performance of the HDOBCC under various form of the load torque. In addition to commonly tested step form of a load torque, severe forms of the load torque such as triangular form and sinusoidal form are tested with the proposed controller. Stability analysis of the closed-loop HDOBCC system is further provided. The next proposed method, DR-PI control, is designed by seeking answer for questions such as: firstly, although the traditional DOBC scheme applied for PMSM shows reasonable results in a PMSM control, its design can be limited to known actual parameters of the PMSM. In practice, actual parameters are usually not available, hence it could be hard to design the traditional DOBC in the absence of a plant information; secondly, for tuning a PI controller the traditional Ziegler-Nichols tuning approach still remains as one of the popular tuning approaches, however it does not give a rigorous explanation on selection of parameters during its design. Consequently, to answer these questions, the DR-PI control is designed for the PMSM speed control. The DR-PI control is designed such that it has a simple PI-like structure with intrinsic disturbance rejection mechanism determined by the parameters of a filtering element, desired plant model, and desired closed-loop system. Simulation and experimental validations are provided to validate the performance of the DR-PI. Furthermore, gain tuning mechanism and stability analysis of the closed-loop DR-PI-based speed control are also presented. The HODOBC scheme as a third proposed control scheme targets on the next research questions as: first, parameters of the traditional PI controller are mostly obtained by trial-and-error approach, which in turn may not guarantee satisfactory results; in a cascaded PMSM control, the outer speed loop performance highly depends on the performance of the inner current loop. The well-tuned speed control loop may degrade in performance, if the inner current loop is not tuned properly. To address these questions, we propose the HODOBC scheme, which consists of optimal PIlike controller in the feedback stabilization part and optimal extended-state observer (ESO) in the disturbance compensation part. The proposed HODOBC showed better performance when it is compared with other traditional controllers via experiments. Stability analysis is provided via the root locus approach. The study on unification of the DOBC and ADRC schemes has the following research question: the DOBC and ADRC are both used in estimation of total disturbance, but these two schemes are considered differently in literature. Hence, the study of both scheme is conducted to show the condition at which these two schemes show identical performance. The analysis of the traditional DOBC and ADRC schemes concludes that both scheme are equivalent in terms of performance characteristics if the dynamical delays of disturbance observers in each scheme are same. The results of analysis reveal that both scheme can be utilized to design a robust control system for PMSM, i.e. once the gains of disturbance observers can be calculated under the DOBC framework, further the disturbance rejection mechanism can be achieved via the ADRC framework. The results of PMSM control with the proposed control schemes have been tested on the Lucas-Nuelle DSP-based experimental setup

    Nonlinear optimal control of interior permanent magnet synchronous motors for electric vehicles

    Get PDF
    At present time, research in the field of Electric Vehicles (EV) is significantly intensifying around the world due to the ambitious goals of many countries, including the UK, to prohibit the sale of new gasoline and diesel vehicles, as well as hybrid vehicles, in the near future around 2030-35. The primary goal of this Ph.D. research is to improve the propulsion system of electric vehicles' powertrains through improvements in the control of Interior Permanent Magnet Synchronous Motors (IPMSM), which are commonly used in EV applications. The proposed approaches are supported by simulations in Matlab, Matlab-Simulink and laboratory-based experiments. The research initially proposes an analytical solution in implicit view for a combined Maximum Torque per Ampere (MTPA) and Maximum Efficiency (ME) control, allowing to determine the optimal d-axis current, based on the concept of minimisation of the fictitious electric power loss. With the exception of two parameters, the equation is identical to that of the ME control. Therefore, upgrading the ME control to the combined MTPA/ME control is relatively easy and doesn't require any change in hardware beyond a few minors of controller code in the software. The presented research demonstrates an easy-to-apply combined MTPA/ME control leading to the ‘Transients Optimal and Energy-Efficient IPMSM Drive’ providing smooth transitions to the MTPA control during transients and to the ME control during steady states. A concept of ‘Nonlinear Optimal Control of IPMSM Drives’ is also introduced in this Ph.D. research. The velocity control loop develops nonlinearities when energy consumption optimisation methods like MTPA, ME, or combined MTPA/ME are added. In addition, the control system's parameters can be inaccurate and fluctuate depending on the operating point or possible uncertainties in real-time operation. In the proposed method, the control structure is the same as in the Field Oriented II Control (FOC), with the close velocity and two current loops, but the Proportional-Integral (PI) controllers are replaced by Nonlinear Optimal (NO) Controllers. The linear part of the controller is designed as a Linear Quadratic Regulator (LQR) with integral action for each loop separately. This is, in fact, a PI controller with optimal gain parameters for a specific operating point. The nonlinear part takes the required fluctuations of the control system’s optimal gain parameters in real-time operation as new control actions to improve a robust control structure. The design procedure for the nonlinear part is similar to that of the LQR, but the criterion of A. Krasovsky's generalised work is used, and the analytical derivations lead to an explicit control solution for the nonlinear optimal part. The nonlinear part emulates the adjustments for updating the linear part’s optimal LQR gains based on operating conditions, instead of employing extensive look-up tables or complicated estimation algorithms. The proposed control is robust in the allowed range of the system’s parameters. In conclusion, upgrading existing industrial IPMSM drives into a robust and optimal energy-efficient version that can be used for electric vehicle applications is the main advantage of the novel control concept described in this Ph.D. research. For this upgrade, only a small portion of the software that is related to the PI controllers needs to be changed; no new hardware is needed. Therefore, it is cost-effective and simple to transform existing industrial IPMSM drives into a better version with the proposed method. This feature also leads to the design of more adequate IPMSM drives to meet the demands of Electric Vehicle (EV) operating cycles

    Disturbance Suppression in PMSM Drives Physical Investigation, Algorithm Design and Implementation

    Get PDF
    The work of this Ph.D. focuses on the investigation of advanced control algorithms for the control of constant and periodic disturbances in Permanent Magnet Synchronous Machines (PMSMs), with the discussion of different methods for improving their negative influence on the machine current and the torque produced at the shaft. The discussion of the disturbances from a control perspective starts with the study of the parameter uncertainties effect on the dynamical performances of the current control and after the detailed analysis in the frequency domain, simple methods for improving the state-of-art decoupling network are given and validated on the testbench. Thanks to the feature of the introduced estimator, the transient behavior of the proposed strategy results in a consistent fast and precise performance. The control scheme allows to avoid the implementation of anti-windup mechanisms in the current control, making the overall controller less sensitive to parameter mismatch. Further, due to the low computational burden, the algorithm is suitable for low cost hardware. Subsequently, the more complex issue of periodic disturbances has been deeply investigated. The theoretical model proposed is validated by comparing the real measured torque with an estimation based on the recovered disturbance affecting the observed voltages and currents. The results are clearly acceptable and further, the experimental validation stresses out the fact that few terms have a predominant role in producing the harmonic disturbances, compared to the others. This consideration lets develop two strategies for suppressing the different harmonic orders present in the machine torque at low-speed operation. One strategy relies on on-line adaptive policies, where the estimated information is passed through a sequence of optimization algorithms with different objectives. In this context, hints on the guaranteed stability are also provided in order to confirm the practical feasibility of the algorithm. The other strategy is based on the off-line generation of some pre-determined functions, limiting the on-line burden to the computation of look-up tables. Both methods brought satisfactory results during the experimental validation, confirming the validity of our approximations made on the original complex model. Although the hardware testbed setup limited the opportunity to validate the methodologies at low speed, this represents a realistic scenario, in fact at higher speed the artificial injection of harmonics within the machine current becomes challenging due to the high electrical rotational speed and it brings more negative effects, in terms of losses and audible noise than benefits on the shaft stress, in fact, the machine inertia acts as a natural filter for the high frequencies harmonics. In summary, it can be said that the research work on advanced control algorithms for the disturbance suppression in PMSM drives has produced affordable and reliable methodologies, which can be of practical implementation for various industrial drives

    Prädiktive Regelung und Finite-Set-Beobachter für Windgeneratoren mit variabler Drehgeschwindigkeit

    Get PDF
    This dissertation presents several model predictive control (MPC) techniques and finite-position-set observers (FPSOs) for permanent-magnet synchronous generators and doubly-fed induction generators in variable-speed wind turbines. The proposed FPSOs are novel ones and based on the concept of finite-control-set MPC. Then, the problems of the MPC techniques like sensitivity to variations of the model parameters and others are investigated and solved in this work.Die vorliegende Dissertation stellt mehrere unterschiedliche Verfahren der modellprädiktiven Regelung (MPC) und so genannte Finite-Position-Set-Beobachter (FPSO) sowohl für Synchrongeneratoren mit Permanentmagneterregung als auch für doppelt gespeiste Asynchrongeneratoren in Windkraftanlagen mit variabler Drehzahl vor und untersucht diese. Für die Beobachter (FPSO) wird ein neuartiger Ansatz vorgestellt, der auf dem Konzept der Finite-Control-Set-MPC basiert. Außerdem werden typische Eigenschaften der MPC wie beispielsweise die Anfälligkeit gegenüber Parameterschwankungen untersucht und kompensiert

    Advances in the Field of Electrical Machines and Drives

    Get PDF
    Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications
    corecore