3,111 research outputs found

    An effective and efficient testing methodology for correctness testing for file recovery tools

    Full text link
    We hereby develop an effective and efficient testing methodology for correctness testing for file recovery tools across different file systems. We assume that the tool tester is familiar with the formats of common file types and has the ability to use the tools correctly. Our methodology first derives a testing plan to minimize the number of runs required to identify the differences in tools with respect to correctness. We also present a case study on correctness testing for file carving tools, which allows us to confirm that the number of necessary testing runs is bounded and our results are statistically sound. <br /

    HyBIS: Windows Guest Protection through Advanced Memory Introspection

    Full text link
    Effectively protecting the Windows OS is a challenging task, since most implementation details are not publicly known. Windows has always been the main target of malwares that have exploited numerous bugs and vulnerabilities. Recent trusted boot and additional integrity checks have rendered the Windows OS less vulnerable to kernel-level rootkits. Nevertheless, guest Windows Virtual Machines are becoming an increasingly interesting attack target. In this work we introduce and analyze a novel Hypervisor-Based Introspection System (HyBIS) we developed for protecting Windows OSes from malware and rootkits. The HyBIS architecture is motivated and detailed, while targeted experimental results show its effectiveness. Comparison with related work highlights main HyBIS advantages such as: effective semantic introspection, support for 64-bit architectures and for latest Windows (8.x and 10), advanced malware disabling capabilities. We believe the research effort reported here will pave the way to further advances in the security of Windows OSes

    Digital Forensics AI: Evaluating, Standardizing and Optimizing Digital Evidence Mining Techniques

    Get PDF
    The impact of AI on numerous sectors of our society and its successes over the years indicate that it can assist in resolving a variety of complex digital forensics investigative problems. Forensics analysis can make use of machine learning models’ pattern detection and recognition capabilities to uncover hidden evidence in digital artifacts that would have been missed if conducted manually. Numerous works have proposed ways for applying AI to digital forensics; nevertheless, scepticism regarding the opacity of AI has impeded the domain’s adequate formalization and standardization. We present three critical instruments necessary for the development of sound machine-driven digital forensics methodologies in this paper. We cover various methods for evaluating, standardizing, and optimizing techniques applicable to artificial intelligence models used in digital forensics. Additionally, we describe several applications of these instruments in digital forensics, emphasizing their strengths and weaknesses that may be critical to the methods’ admissibility in a judicial process

    Forensic Analysis of Digital Image Tampering

    Get PDF
    The use of digital photography has increased over the past few years, a trend which opens the door for new and creative ways to forge images. The manipulation of images through forgery influences the perception an observer has of the depicted scene, potentially resulting in ill consequences if created with malicious intentions. This poses a need to verify the authenticity of images originating from unknown sources in absence of any prior digital watermarking or authentication technique. This research explores the holes left by existing research; specifically, the ability to detect image forgeries created using multiple image sources and specialized methods tailored to the popular JPEG image format. In an effort to meet these goals, this thesis presents four methods to detect image tampering based on fundamental image attributes common to any forgery. These include discrepancies in 1) lighting and 2) brightness levels, 3) underlying edge inconsistencies, and 4) anomalies in JPEG compression blocks. Overall, these methods proved encouraging in detecting image forgeries with an observed accuracy of 60% in a completely blind experiment containing a mixture of 15 authentic and forged images

    Explainable digital forensics AI: Towards mitigating distrust in AI-based digital forensics analysis using interpretable models

    Get PDF
    The present level of skepticism expressed by courts, legal practitioners, and the general public over Artificial Intelligence (AI) based digital evidence extraction techniques has been observed, and understandably so. Concerns have been raised about closed-box AI models’ transparency and their suitability for use in digital evidence mining. While AI models are firmly rooted in mathematical, statistical, and computational theories, the argument has centered on their explainability and understandability, particularly in terms of how they arrive at certain conclusions. This paper examines the issues with closed-box models; the goals; and methods of explainability/interpretability. Most importantly, recommendations for interpretable AI-based digital forensics (DF) investigation are proposed

    Secure Storage Model for Digital Forensic Readiness

    Get PDF
    Securing digital evidence is a key factor that contributes to evidence admissibility during digital forensic investigations, particularly in establishing the chain of custody of digital evidence. However, not enough is done to ensure that the environment and access to the evidence are secure. Attackers can go to extreme lengths to cover up their tracks, which is a serious concern to digital forensics – particularly digital forensic readiness. If an attacker gains access to the location where evidence is stored, they could easily alter the evidence (if not remove it altogether). Even though integrity checks can be performed to ensure that the evidence is sound, the collected evidence may contain sensitive information that an attacker can easily use for other forms of attack. To this end, this paper proposes a model for securely storing digital evidence captured pre- and post-incident to achieve reactive forensics. Various components were considered, such as integrity checks, environment sandboxing, strong encryption, two-factor authentication, as well as unique random file naming. A proof-of-concept tool was developed to realize this model and to prove its validity. A series of tests were conducted to check for system security, performance, and requirements validation, Overall, the results obtained showed that, with minimal effort, securing forensic artefacts is a relatively inexpensive and reliable feat. This paper aims to standardize evidence storage, practice high security standards, as well as remove the need to create new systems that achieve the same purpose
    • …
    corecore