1,209 research outputs found

    Robust Cooperative Relay Beamforming

    Full text link
    In this paper, the robust distributed relay beamforming problem is solved using the worst case approach, where the problem solution has been involved because of the effect of uncertainty of channel knowledge on the quality of service (QoS) constraints. It is shown that the original robust design, which is a non-convex semi-infinite problem (SIP), can be relaxed and reformed to a semi-definite problem (SDP). Monte-Carlo simulations are presented to verify the performance improvement of our proposed robust problem over existing robust and non-robust problems in terms of transmit power and symbol error probability.Comment: IEEE Wireless Communications Letter

    Cooperative Beamforming for Cognitive Radio-Based Broadcasting Systems with Asynchronous Interferences

    Full text link
    In order to address the asynchronous interference issue for a generalized scenario with multiple primary and multiple secondary receivers, in this paper, we propose an innovative cooperative beamforming technique. In particular, the cooperative beamforming design is formulated as an optimization problem that maximizes the weighted sum achievable transmission rate of secondary destinations while it maintains the asynchronous interferences at the primary receivers below their target thresholds. In light of the intractability of the problem, we propose a two-phase suboptimal cooperative beamforming technique. First, it finds the beamforming directions corresponding to different secondary destinations. Second, it allocates the power among different beamforming directions. Due to the multiple interference constraints corresponding to multiple primary receivers, the power allocation scheme in the second phase is still complex. Therefore, we also propose a low complex power allocation algorithm. The proposed beamforming technique is extended for the cases, when cooperating CR nodes (CCRNs) have statistical or erroneous channel knowledge of the primary receivers. We also investigate the performance of joint CCRN selection and beamforming technique. The presented numerical results show that the proposed beamforming technique can significantly reduce the asynchronous interference signals at the primary receivers and increase the sum transmission rate of secondary destinations compared to the well known zero-forcing beamforming (ZFBF) technique.Comment: Submitted to the IEEE Transactions on Wireless Communication

    Simultaneous Wireless Information Power Transfer for MISO Secrecy Channel

    Full text link
    This paper investigates simultaneous wireless information and power transfer (SWIPT) for multiuser multiple-input-single-output (MISO) secrecy channel. First, transmit beamfoming without artificial noise (AN) design is considered, where two secrecy rate optimization frameworks (i.e., secrecy rate maximization and harvested energy maximization) are investigated. These two optimization problems are not convex, and cannot be solved directly. For secrecy rate maximization problem, we employ bisection method to optimize the associated power minimization problem, and first-order Taylor series expansion is consider to approximate the energy harvesting (EH) constraint and the harvested energy maximization problem. Moreover, we extend our proposed algorithm to the associated robust schemes by incorporating with channel uncertainties, where two-level method is proposed for the harvested energy maximization problem. Then, transmit beamforming with AN design is studied for the same secrecy rate maximization problem, which are reformulated into semidefinite programming (SDP) based on one-dimensional search and successive convex approximation (SCA), respectively. Moreover, tightness analysis of rank relaxation is provided to show the optimal transmit covariance matrix exactly returns rank-one. Simulation results is provided to validate the performance of the proposed algorithm.Comment: 14 pages, 7 figure

    Secure MIMO Relaying Network: An Artificial Noise Aided Robust Design Approach

    Full text link
    Owing to the vulnerability of relay-assisted and device-to-device (D2D) communications, improving wireless security from a physical layer signal processing perspective is attracting increasing interest. Hence we address the problem of secure transmission in a relay-assisted network, where a pair of legitimate user equipments (UEs) communicate with the aid of a multiple-input multiple output (MIMO) relay in the presence of multiple eavesdroppers (eves). Assuming imperfect knowledge of the eves' channels, we jointly optimize the power of the source UE, the amplify-and-forward (AF) relaying matrix and the covariance of the artificial noise (AN) transmitted by the relay, in order to maximize the received signal-to-interference-plus-noise ratio (SINR) at the destination, while imposing a set of robust secrecy constraints. To tackle the resultant nonconvex optimization problem, a globally optimal solution based on a bi-level optimization framework is proposed, but with high complexity. Then a low-complexity sub-optimal method relying on a new penalized difference-of-convex (DC) algorithmic framework is proposed, which is specifically designed for non-convex semidefinite programs (SDPs). We show how this penalized DC framework can be invoked for solving our robust secure relaying problem with proven convergence. Our extensive simulation results show that both proposed solutions are capable of ensuring the secrecy of the relay-aided transmission and significantly improve the robustness towards the eves' channel uncertainties as compared to the non-robust counterparts. It is also demonstrated the penalized DC-based method advocated yields a performance close to the globally optimal solution.Comment: 13 pages, 6 figures, one table and one supplementary documen

    A Survey on MIMO Transmission with Discrete Input Signals: Technical Challenges, Advances, and Future Trends

    Full text link
    Multiple antennas have been exploited for spatial multiplexing and diversity transmission in a wide range of communication applications. However, most of the advances in the design of high speed wireless multiple-input multiple output (MIMO) systems are based on information-theoretic principles that demonstrate how to efficiently transmit signals conforming to Gaussian distribution. Although the Gaussian signal is capacity-achieving, signals conforming to discrete constellations are transmitted in practical communication systems. As a result, this paper is motivated to provide a comprehensive overview on MIMO transmission design with discrete input signals. We first summarize the existing fundamental results for MIMO systems with discrete input signals. Then, focusing on the basic point-to-point MIMO systems, we examine transmission schemes based on three most important criteria for communication systems: the mutual information driven designs, the mean square error driven designs, and the diversity driven designs. Particularly, a unified framework which designs low complexity transmission schemes applicable to massive MIMO systems in upcoming 5G wireless networks is provided in the first time. Moreover, adaptive transmission designs which switch among these criteria based on the channel conditions to formulate the best transmission strategy are discussed. Then, we provide a survey of the transmission designs with discrete input signals for multiuser MIMO scenarios, including MIMO uplink transmission, MIMO downlink transmission, MIMO interference channel, and MIMO wiretap channel. Additionally, we discuss the transmission designs with discrete input signals for other systems using MIMO technology. Finally, technical challenges which remain unresolved at the time of writing are summarized and the future trends of transmission designs with discrete input signals are addressed.Comment: 110 pages, 512 references, submit to Proceedings of the IEE

    Study of Opportunistic Cooperation Techniques using Jamming and Relays for Physical-Layer Security in Buffer-aided Relay Networks

    Full text link
    In this paper, we investigate opportunistic relay and jammer cooperation schemes in multiple-input multiple-output (MIMO) buffer-aided relay networks. The network consists of one source, an arbitrary number of relay nodes, legitimate users and eavesdroppers, with the constraints of physical layer security. We propose an algorithm to select a set of relay nodes to enhance the legitimate users' transmission and another set of relay nodes to perform jamming of the eavesdroppers. With Inter-Relay interference (IRI) taken into account, interference cancellation can be implemented to assist the transmission of the legitimate users. Secondly, IRI can also be used to further increase the level of harm of the jamming signal to the eavesdroppers. By exploiting the fact that the jamming signal can be stored at the relay nodes, we also propose a hybrid algorithm to set a signal-to-interference and noise ratio (SINR) threshold at the node to determine the type of signal stored at the relay node. With this separation, the signals with high SINR are delivered to the users as conventional relay systems and the low SINR performance signals are stored as potential jamming signals. Simulation results show that the proposed techniques obtain a significant improvement in secrecy rate over previously reported algorithms.Comment: 8 pages, 3 figure

    How to Understand LMMSE Transceiver Design for MIMO Systems From Quadratic Matrix Programming

    Full text link
    In this paper, a unified linear minimum mean-square-error (LMMSE) transceiver design framework is investigated, which is suitable for a wide range of wireless systems. The unified design is based on an elegant and powerful mathematical programming technology termed as quadratic matrix programming (QMP). Based on QMP it can be observed that for different wireless systems, there are certain common characteristics which can be exploited to design LMMSE transceivers e.g., the quadratic forms. It is also discovered that evolving from a point-to-point MIMO system to various advanced wireless systems such as multi-cell coordinated systems, multi-user MIMO systems, MIMO cognitive radio systems, amplify-and-forward MIMO relaying systems and so on, the quadratic nature is always kept and the LMMSE transceiver designs can always be carried out via iteratively solving a number of QMP problems. A comprehensive framework on how to solve QMP problems is also given. The work presented in this paper is likely to be the first shoot for the transceiver design for the future ever-changing wireless systems.Comment: 31 pages, 4 figures, Accepted by IET Communication

    Directional Relays for Multi-Hop Cooperative Cognitive Radio Networks

    Get PDF
    In this paper, we investigate power allocation and beamforming in a relay assisted cognitive radio (CR) network. Our objective is to maximize the performance of the CR network while limiting interference in the direction of the primary users (PUs). In order to achieve these goals, we first consider joint power allocation and beamforming for cognitive nodes in direct links. Then, we propose an optimal power allocation strategy for relay nodes in indirect transmissions. Unlike the conventional cooperative relaying networks, the applied relays are equipped with directional antennas to further reduce the interference to PUs and meet the CR network requirements. The proposed approach employs genetic algorithm (GA) to solve the optimization problems. Numerical simulation results illustrate the quality of service (QoS) satisfaction in both primary and secondary networks. These results also show that notable improvements are achieved in the system performance if the conventional omni-directional relays are replaced with directional ones

    Secure SWIPT for Directional Modulation Aided AF Relaying Networks

    Full text link
    Secure wireless information and power transfer based on directional modulation is conceived for amplify-and-forward (AF) relaying networks. Explicitly, we first formulate a secrecy rate maximization (SRM) problem, which can be decomposed into a twin-level optimization problem and solved by a one-dimensional (1D) search and semidefinite relaxation (SDR) technique. Then in order to reduce the search complexity, we formulate an optimization problem based on maximizing the signal-to-leakage-AN-noise-ratio (Max-SLANR) criterion, and transform it into a SDR problem. Additionally, the relaxation is proved to be tight according to the classic Karush-Kuhn-Tucker (KKT) conditions. Finally, to reduce the computational complexity, a successive convex approximation (SCA) scheme is proposed to find a near-optimal solution. The complexity of the SCA scheme is much lower than that of the SRM and the Max-SLANR schemes. Simulation results demonstrate that the performance of the SCA scheme is very close to that of the SRM scheme in terms of its secrecy rate and bit error rate (BER), but much better than that of the zero forcing (ZF) scheme

    Cooperative Communication Based on Random Beamforming Strategy in Wireless Sensor Networks

    Full text link
    This paper presents a two-phase cooperative communication strategy and an optimal power allocation strategy to transmit sensor observations to a fusion center in a large-scale sensor network. Outage probability is used to evaluate the performance of the proposed system. Simulation results demonstrate that: 1) when signal-to-noise ratio is low, the performance of the proposed system is better than that of the multiple-input and multiple-output system over uncorrelated slow fading Rayleigh channels; 2) given the transmission rate and the total transmission SNR, there exists an optimal power allocation that minimizes the outage probability; 3) on correlated slow fading Rayleigh channels, channel correlation will degrade the system performance in linear proportion to the correlation level.Comment: 6 pages and 7 figure
    corecore