232 research outputs found

    ๋ฉ€ํ‹ฐ๋กœํ„ฐ ๊ธฐ๋ฐ˜ ๋‹ค๋ชฉ์  ๋น„ํ–‰ ๋กœ๋ด‡ ํ”Œ๋žซํผ์„ ์œ„ํ•œ ๊ฐ•๊ฑด ์ œ์–ด ๋ฐ ์™„์ „๊ตฌ๋™ ๋น„ํ–‰ ๋งค์ปค๋‹ˆ์ฆ˜

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ๊น€ํ˜„์ง„.์˜ค๋Š˜๋‚  ๋ฉ€ํ‹ฐ๋กœํ„ฐ ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋Š” ๋‹จ์ˆœํ•œ ๋น„ํ–‰ ๋ฐ ๊ณต์ค‘ ์˜์ƒ ์ดฌ์˜์šฉ ์žฅ๋น„์˜ ๊ฐœ๋…์„ ๋„˜์–ด ๋น„ํ–‰ ๋งค๋‹ˆํ“ฐ๋ ˆ์ด์…˜, ๊ณต์ค‘ ํ™”๋ฌผ ์šด์†ก ๋ฐ ๊ณต์ค‘ ์„ผ์‹ฑ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ์ž„๋ฌด์— ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ถ”์„ธ์— ๋งž์ถ”์–ด ๋กœ๋ณดํ‹ฑ์Šค ๋ถ„์•ผ์—์„œ ๋ฉ€ํ‹ฐ๋กœํ„ฐ ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋Š” ๋ถ€๊ณผ๋œ ์ž„๋ฌด์— ๋งž์ถ”์–ด ์›ํ•˜๋Š” ์žฅ๋น„ ๋ฐ ์„ผ์„œ๋ฅผ ์ž์œ ๋กœ์ด ํƒ‘์žฌํ•˜๊ณ  ๋น„ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค๋ชฉ์  ๊ณต์ค‘ ๋กœ๋ด‡ ํ”Œ๋žซํผ์œผ๋กœ ์ธ์‹๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฌ์˜ ๋ฉ€ํ‹ฐ๋กœํ„ฐ ํ”Œ๋žซํผ์€ ๋Œํ’ ๋“ฑ์˜ ์™ธ๋ž€์— ๋‹ค์†Œ ๊ฐ•๊ฑดํ•˜์ง€ ๋ชปํ•œ ์ œ์–ด์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ๋ณ‘์ง„์šด๋™์˜ ์ œ์–ด๋ฅผ ์œ„ํ•ด ๋น„ํ–‰ ์ค‘ ์ง€์†์ ์œผ๋กœ ๋™์ฒด์˜ ์ž์„ธ๋ฅผ ๋ณ€๊ฒฝํ•ด์•ผ ํ•ด ์„ผ์„œ ๋“ฑ ๋™์ฒด์— ๋ถ€์ฐฉ๋œ ํƒ‘์žฌ๋ฌผ์˜ ์ž์„ธ ๋˜ํ•œ ์ง€์†์ ์œผ๋กœ ๋ณ€ํ™”ํ•œ๋‹ค๋Š” ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์œ„์˜ ๋‘ ๊ฐ€์ง€ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์™ธ๋ž€์— ๊ฐ•๊ฑดํ•œ ๋ฉ€ํ‹ฐ๋กœํ„ฐ ์ œ์–ด๊ธฐ๋ฒ•๊ณผ, ๋ณ‘์ง„์šด๋™๊ณผ ์ž์„ธ์šด๋™์„ ๋…๋ฆฝ์ ์œผ๋กœ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ํ˜•ํƒœ์˜ ์™„์ „๊ตฌ๋™ ๋ฉ€ํ‹ฐ๋กœํ„ฐ ๋น„ํ–‰ ๋งค์ปค๋‹ˆ์ฆ˜์„ ์†Œ๊ฐœํ•œ๋‹ค. ๊ฐ•๊ฑด ์ œ์–ด๊ธฐ๋ฒ•์˜ ๊ฒฝ์šฐ, ๋จผ์ € ์ •ํ™•ํ•œ ๋ณ‘์ง„์šด๋™ ์ œ์–ด๋ฅผ ์œ„ํ•œ ๋ณ‘์ง„ ํž˜ ์ƒ์„ฑ ๊ธฐ๋ฒ•์„ ์†Œ๊ฐœํ•˜๊ณ  ๋’ค์ด์–ด ๋ณ‘์ง„ ํž˜ ์™ธ๋ž€์— ๊ฐ•๊ฑดํ•œ ์ œ์–ด๋ฅผ ์œ„ํ•œ ์™ธ๋ž€๊ด€์ธก๊ธฐ ๊ธฐ๋ฐ˜ ๊ฐ•๊ฑด ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ค๊ณ„ ๋ฐฉ์•ˆ์„ ๋…ผ์˜ํ•œ๋‹ค. ์ œ์–ด๊ธฐ์˜ ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„ ์•ˆ์ •์„ฑ์€ mu ์•ˆ์ •์„ฑ ๋ถ„์„ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๊ฒ€์ฆ๋˜๋ฉฐ, mu ์•ˆ์ •์„ฑ ๋ถ„์„์ด ๊ฐ€์ง€๋Š” ์—„๋ฐ€ํ•œ ์•ˆ์ •์„ฑ ๋ถ„์„์˜ ๊ฒฐ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ์Šค๋ชฐ๊ฒŒ์ธ ์ด๋ก  (Small Gain Theorem) ๊ธฐ๋ฐ˜์˜ ์•ˆ์ •์„ฑ ๋ถ„์„ ๊ฒฐ๊ณผ๊ฐ€ ๋™์‹œ์— ์ œ์‹œ ๋ฐ ๋น„๊ต๋œ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ, ๊ฐœ๋ฐœ๋œ ์ œ์–ด๊ธฐ๋ฅผ ๋„์ž…ํ•œ ๋ฉ€ํ‹ฐ๋กœํ„ฐ์˜ 3์ฐจ์› ๋ณ‘์ง„ ๊ฐ€์†๋„ ์ œ์–ด ์„ฑ๋Šฅ ๋ฐ ํž˜ ๋ฒกํ„ฐ์˜ ํ˜•ํƒœ๋กœ ์ธ๊ฐ€๋˜๋Š” ๋ณ‘์ง„ ์šด๋™ ์™ธ๋ž€์— ๋Œ€ํ•œ ๊ทน๋ณต ์„ฑ๋Šฅ์„ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์—ฌ, ์ œ์•ˆ๋œ ์ œ์–ด๊ธฐ๋ฒ•์˜ ํšจ๊ณผ์ ์ธ ๋น„ํ–‰ ์ง€์  ๋ฐ ๊ถค์  ์ถ”์ข… ๋Šฅ๋ ฅ์„ ํ™•์ธํ•œ๋‹ค. ์™„์ „ ๊ตฌ๋™ ๋ฉ€ํ‹ฐ๋กœํ„ฐ์˜ ๊ฒฝ์šฐ, ๊ธฐ์กด์˜ ์™„์ „๊ตฌ๋™ ๋ฉ€ํ‹ฐ๋กœํ„ฐ๊ฐ€ ๊ฐ€์ง„ ๊ณผ๋„ํ•œ ์ค‘๋Ÿ‰ ์ฆ๊ฐ€ ๋ฐ ์ €์กฐํ•œ ์—๋„ˆ์ง€ ํšจ์œจ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋งค์ปค๋‹ˆ์ฆ˜์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ƒˆ๋กœ์šด ๋งค์ปค๋‹ˆ์ฆ˜์€ ๊ธฐ์กด ๋ฉ€ํ‹ฐ๋กœํ„ฐ์™€ ์ตœ๋Œ€ํ•œ ์œ ์‚ฌํ•œ ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง€๋˜ ์™„์ „๊ตฌ๋™์„ ์œ„ํ•ด ์˜ค์ง ๋‘ ๊ฐœ์˜ ์„œ๋ณด๋ชจํ„ฐ๋งŒ์„ ํฌํ•จํ•˜๋ฉฐ, ์ด๋กœ ์ธํ•ด ๊ธฐ์กด ๋ฉ€ํ‹ฐ๋กœํ„ฐ์™€ ๋น„๊ตํ•ด ์ตœ์†Œํ•œ์˜ ํ˜•ํƒœ์˜ ๋ณ€ํ˜•๋งŒ์„ ๊ฐ€์ง€๋„๋ก ์„ค๊ณ„๋œ๋‹ค. ์ƒˆ๋กœ์šด ํ”Œ๋žซํผ์˜ ๋™์  ํŠน์„ฑ์— ๋Œ€ํ•œ ๋ถ„์„๊ณผ ํ•จ๊ป˜ ์œ ๋„๋œ ์šด๋™๋ฐฉ์ •์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ 6์ž์œ ๋„ ๋น„ํ–‰ ์ œ์–ด๊ธฐ๋ฒ•์ด ์†Œ๊ฐœ๋˜๋ฉฐ, ์ตœ์ข…์ ์œผ๋กœ ๋‹ค์–‘ํ•œ ์‹คํ—˜๊ณผ ๊ทธ ๊ฒฐ๊ณผ๋“ค์„ ํ†ตํ•ด ํ”Œ๋žซํผ์˜ ์™„์ „๊ตฌ๋™ ๋น„ํ–‰ ๋Šฅ๋ ฅ์„ ๊ฒ€์ฆํ•œ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์™„์ „๊ตฌ๋™ ๋ฉ€ํ‹ฐ๋กœํ„ฐ๊ฐ€ ๊ฐ€์ง€๋Š” ์—ฌ๋ถ„์˜ ์ œ์–ด์ž…๋ ฅ(redundancy)๋ฅผ ํ™œ์šฉํ•œ ์ฟผ๋“œ์ฝฅํ„ฐ์˜ ๋‹จ์ผ๋ชจํ„ฐ ๊ณ ์žฅ ๋Œ€๋น„ ๋น„์ƒ ๋น„ํ–‰ ๊ธฐ๋ฒ•์„ ์†Œ๊ฐœํ•œ๋‹ค. ๋น„์ƒ ๋น„ํ–‰ ์ „๋žต์— ๋Œ€ํ•œ ์ž์„ธํ•œ ์†Œ๊ฐœ ๋ฐ ์‹คํ˜„ ๋ฐฉ๋ฒ•, ๋น„์ƒ ๋น„ํ–‰ ์‹œ์˜ ๋™์—ญํ•™์  ํŠน์„ฑ์— ๋Œ€ํ•œ ๋ถ„์„ ๊ฒฐ๊ณผ๊ฐ€ ์†Œ๊ฐœ๋˜๋ฉฐ, ์‹คํ—˜๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์˜ ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•œ๋‹ค.Recently, multi-rotor unmanned aerial vehicles (UAVs) are used for a variety of missions beyond its basic flight, including aerial manipulation, aerial payload transportation, and aerial sensor platform. Following this trend, the multirotor UAV is recognized as a versatile aerial robotics platform that can freely mount and fly the necessary mission equipment and sensors to perform missions. However, the current multi-rotor platform has a relatively poor ability to maintain nominal flight performance against external disturbances such as wind or gust compared to other robotics platforms. Also, the multirotor suffers from maintaining a stable payload attitude, due to the fact that the attitude of the fuselage should continuously be changed for translational motion control. Particularly, unstabilized fuselage attitude can be a drawback for multirotor's mission performance in such cases as like visual odometry-based flight, since the fuselage-attached sensor should also be tilted during the flight and therefore causes poor sensor information acquisition. To overcome the above two problems, in this dissertation, we introduce a robust multirotor control method and a novel full-actuation mechanism which widens the usability of the multirotor. The goal of the proposed control method is to bring robustness to the translational motion control against various weather conditions. And the goal of the full actuation mechanism is to allow the multi-rotor to take arbitrary payload/fuselage attitude independently of the translational motion. For robust multirotor control, we first introduce a translational force generation technique for accurate translational motion control and then discuss the design method of disturbance observer (DOB)-based robust control algorithm. The stability of the proposed feedback controller is validated by the mu-stability analysis technique, and the results are compared to the small-gain theorem (SGT)-based stability analysis to validate the rigorousness of the analysis. Through the experiments, we validate the translational acceleration control performance of the developed controller and confirm the robustness against external disturbance forces. For a fully-actuated multirotor platform, we propose a new mechanism called a T3-Multirotor that can overcome the excessive weight increase and poor energy efficiency of the existing fully-actuated multirotor. The structure of the new platform is designed to be as close as possible to the existing multi-rotor and includes only two servo motors for full actuation. The dynamic characteristics of the new platform are analyzed and a six-degree-of-freedom (DOF) flight controller is designed based on the derived equations of motion. The full actuation of the proposed platform is then validated through various experiments. As a derivative study, this paper also introduces an emergency flight technique to prepare for a single motor failure scenario of a multi-rotor using the redundancy of the T3-Multirotor platform. The detailed introduction and implementation method of the emergency flight strategy with the analysis of the dynamic characteristics during the emergency flight is introduced, and the experimental results are provided to verify the validity of the proposed technique.1 Introduction 1 1.1 Motivation 1 1.2 Literature survey 3 1.2.1 Robust translational motion control 3 1.2.2 Fully-actuated multirotor platform 4 1.3 Research objectives and contributions 5 1.3.1 Goal #I: Robust multirotor motion control 5 1.3.2 Goal #II: A new fully actuated multirotor platform 6 1.3.3 Goal #II-A: T3-Multirotor-based fail-safe flight 7 1.4 Thesis organization 7 2 Multi-Rotor Unmanned Aerial Vehicle: Overview 9 2.1 Platform overview 9 2.2 Mathematical model of multi-rotor UAV 10 3 Robust Translational Motion Control 13 3.1 Introduction 14 3.2 Translational force/acceleration control 14 3.2.1 Relationship between \mathbf{r} and \tilde{\ddot{\mathbf{X}}} 15 3.2.2 Calculation of \mathbf{r}_d from \tilde{\ddot{\mathbf{X}}}_d considering dynamics 16 3.3 Disturbance observer 22 3.3.1 An overview of the disturbance-merged overall system 22 3.3.2 Disturbance observer 22 3.4 Stability analysis 26 3.4.1 Modeling of P(s) considering uncertainties 27 3.4.2 \tau-determination through \mu-analysis 30 3.5 Simulation and experimental result 34 3.5.1 Validation of acceleration tracking performance 34 3.5.2 Validation of DOB performance 34 4 Fully-Actuated Multirotor Mechanism 39 4.1 Introduction 39 4.2 Mechanism 40 4.3 Modeling 42 4.3.1 General equations of motion of TP and FP 42 4.3.2 Simplified equations of motion of TP and FP 46 4.4 Controller design 49 4.4.1 Controller overview 49 4.4.2 Independent roll and pitch attitude control of TP and FP 50 4.4.3 Heading angle control 54 4.4.4 Overall control scheme 54 4.5 Simulation result 56 4.5.1 Scenario 1: Changing FP attitude during hovering 58 4.5.2 Scenario 2: Fixing FP attitude during translation 58 4.6 Experimental result 60 4.6.1 Scenario 1: Changing FP attitude during hovering 60 4.6.2 Scenario 2: Fixing FP attitude during translation 60 4.7 Applications 63 4.7.1 Personal aerial vehicle 63 4.7.2 High MoI payload transportation platform - revisit of [1] 63 4.7.3 Take-off and landing on an oscillating landing pad 64 5 Derived Research: Fail-safe Flight in a Single Motor Failure Scenario 67 5.1 Introduction 67 5.1.1 Related works 68 5.1.2 Contributions 68 5.2 Mechanism and dynamics 69 5.2.1 Mechanism 69 5.2.2 Platform dynamics 70 5.3 Fail-safe flight strategy 75 5.3.1 Fail-safe flight method 75 5.3.2 Hardware condition for single motor fail-safe flight 80 5.4 Controller design 83 5.4.1 Faulty motor detection 83 5.4.2 Controller design 84 5.4.3 Attitude dynamics in fail-safe mode 86 5.5 Experiment result 90 5.5.1 Experimental settings 90 5.5.2 Stability and control performance review 92 5.5.3 Flight results 93 6 Conclusions 96 Abstract (in Korean) 107Docto

    ๊ฒฝ์ฒฉ๋ฌธ์„ ์—ฌ๋Š” ๋น„ํ–‰ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์— ๋Œ€ํ•œ ๋ชจ๋ธ ์˜ˆ์ธก ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2020. 8. ๊น€ํ˜„์ง„.From aerial pick-and-place to aerial transportation, aerial manipulation has been extensively studied in recent years thanks to its mobility and dexterity, each of which is a merit of an aerial vehicle and a robotic arm. However, to fully harness the concept of aerial manipulation, more complex tasks including interaction with movable structures should also be considered. Among various types of movable structures, this paper presents a multirotor-based aerial manipulator opening a daily-life moving structure, a hinged door. Two additional issues that would arise in interaction with a movable structure are addressed: 1) a constrained motion of the structure, and 2) collision avoidance with a moving structure. To handle these issues, we formulate a model predictive control (MPC) problem with a system dynamics constraint and state constraints for collision avoidance. A coupled system dynamics of a multirotor-based aerial manipulator and a hinged door is derived and later simplified for faster computation in MPC. State constraints for collision avoidance with itself, a door, and a doorframe are generated. By implementing a constrained version of differential dynamic programming (DDP), we can generate reference trajectories through MPC in real-time. The proposed method is validated through simulation results and experiments with a real-like hinged door in which a disturbance observer (DOB) based robust motion controller is employed.๋น„ํ–‰ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” 3์ฐจ์› ๊ณต๊ฐ„ ์†์— ๋น ๋ฅด๊ฒŒ ์œ„์น˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋น„ํ–‰์ฒด์˜ ์žฅ์ ๊ณผ ์™ธ๋ถ€์™€์˜ ์ƒํ˜ธ์ž‘์šฉ์ด ๊ฐ€๋Šฅํ•œ ๋กœ๋ด‡ํŒ”์˜ ์žฅ์ ์ด ๊ฒฐํ•ฉ๋œ ๋น„ํ–‰์ฒด๋กœ, ์ตœ๊ทผ ๋ฌผ๊ฑด ์ง‘๊ณ  ์˜ฎ๊ธฐ๊ธฐ๋ถ€ํ„ฐ ๋ฌผํ’ˆ ์šด์†ก๊นŒ์ง€ ๋‹ค์–‘ํ•œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ํ™œ๋ฐœํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์˜จ์ „ํžˆ ๋น„ํ–‰ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์›€์ง์ผ ์ˆ˜ ์žˆ๋Š” ์™ธ๋ถ€ ๊ตฌ์กฐ์™€์˜ ์ƒํ˜ธ์ž‘์šฉ๊ณผ ๊ฐ™์ด ๋”์šฑ ๋ณต์žกํ•œ ์ž„๋ฌด ๋˜ํ•œ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•  ๊ฒƒ์ด๋‹ค. ์—ฌ๋Ÿฌ ์ข…๋ฅ˜์˜ ์›€์ง์ผ ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ๋ฌผ ์ค‘ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ผ์ƒ ์†์—์„œ ์‰ฝ๊ฒŒ ๋งˆ์ฃผ์น  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ์ฒฉ๋ฌธ์„ ์—ฌ๋Š” ๋ฉ€ํ‹ฐ๋กœํ„ฐ ๊ธฐ๋ฐ˜์˜ ๋น„ํ–‰ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์— ๋Œ€ํ•ด ์ œ์‹œํ•œ๋‹ค. ์ •์ ์ธ ๊ตฌ์กฐ๋ฌผ๊ณผ์˜ ์ƒํ˜ธ์ž‘์šฉ๊ณผ๋Š” ๋‹ฌ๋ฆฌ ๋™์ ์ธ ๊ตฌ์กฐ๋ฌผ๊ณผ์˜ ์ƒํ˜ธ์ž‘์šฉ์— ์žˆ์–ด์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” 1) ๊ตฌ์กฐ๋ฌผ์˜ ์ œ์•ฝ๋œ ์›€์ง์ž„, ๊ทธ๋ฆฌ๊ณ  2) ์›€์ง์ด๋Š” ๊ตฌ์กฐ๋ฌผ๊ณผ์˜ ์ถฉ๋Œ ํšŒํ”ผ์˜ 2๊ฐ€์ง€ ์ถ”๊ฐ€์ ์ธ ๋ฌธ์ œ์— ๋Œ€ํ•ด ๋‹ค๋ฃจ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด ๋ชจ๋ธ ์˜ˆ์ธก ์ œ์–ด (MPC)๋ฅผ ์ ์šฉํ•˜์˜€์œผ๋ฉฐ, ์‹œ์Šคํ…œ ๋™์—ญํ•™์— ๋Œ€ํ•œ ์ œ์•ฝ์กฐ๊ฑด ๋ฐ ์ถฉ๋Œ ํšŒํ”ผ์— ๋Œ€ํ•œ ์ œ์•ฝ ์กฐ๊ฑด์„ ๋ถ€์—ฌํ•˜์˜€๋‹ค. ๋ฉ€ํ‹ฐ๋กœํ„ฐ ๊ธฐ๋ฐ˜์˜ ๋น„ํ–‰ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์™€ ๊ฒฝ์ฒฉ๋ฌธ์˜ ๊ฒฐํ•ฉ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๋™์—ญํ•™์„ ์œ ๋„ํ•˜์˜€์œผ๋ฉฐ, ์ดํ›„ ๋ชจ๋ธ ์˜ˆ์ธก ์ œ์–ด์—์„œ์˜ ๋น ๋ฅธ ๊ณ„์‚ฐ ์†๋„๋ฅผ ์œ„ํ•ด ๋‹จ์ˆœํ™”๋˜์—ˆ๋‹ค. ์ถฉ๋Œ ํšŒํ”ผ์— ๋Œ€ํ•œ ์ œ์•ฝ ์กฐ๊ฑด์€ ๋ชจ๋‘ ์ƒํƒœ ๋ณ€์ˆ˜๋กœ ํ‘œํ˜„๋˜์—ˆ์œผ๋ฉฐ, ๋น„ํ–‰ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ๋ฉ€ํ‹ฐ๋กœํ„ฐ ํ”„๋ ˆ์ž„๊ณผ ๋กœ๋ด‡ํŒ” ์‚ฌ์ด์˜ ์ถฉ๋Œ (์ž๊ธฐ ์ถฉ๋Œ), ๋ฌธ๊ณผ์˜ ์ถฉ๋Œ, ๊ทธ๋ฆฌ๊ณ  ๋ฌธํ‹€๊ณผ์˜ ์ถฉ๋Œ์„ ๊ณ ๋ คํ•˜์˜€๋‹ค. ๋ฏธ๋ถ„ ๊ธฐ๋ฐ˜์˜ ๋™์  ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ธฐ๋ฒ• (differential dynamic programming)์— ์ œ์•ฝ์กฐ๊ฑด์ด ๊ณ ๋ ค๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌํ˜„ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ์ œ์–ด๋ฅผ ํ†ตํ•ด ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฒฝ๋กœ๋ฅผ ๊ณ„ํšํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹ค์ œ ํฌ๊ธฐ์˜ ๋ฌธ์„ ํ™œ์šฉํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ์œผ๋ฉฐ, ์™ธ๋ž€ ๊ด€์ธก๊ธฐ ๊ธฐ๋ฐ˜์˜ ๊ฐ•๊ฑด ์ œ์–ด ๊ธฐ๋ฒ•์ด ์‹คํ—˜์— ํ™œ์šฉ๋˜์—ˆ๋‹ค.1 Introduction 1 1.1 Literature review 2 1.2 Thesis contribution 3 1.3 Thesis outline 3 2 Equations of motion 4 2.1 Assumption 4 2.2 Kinematics 5 2.3 Dynamics 6 2.4 Simpli ed dynamics 8 3 Model predictive control 10 3.1 Problem formulation 10 3.1.1 Objective function 11 3.1.2 Hard constraints 11 3.2 Collision avoidance constraints 11 3.2.1 Self collision avoidance 13 3.2.2 Door collision avoidance 13 3.2.3 Doorframe collision avoidance 14 3.3 Optimal control solver 14 3.3.1 Differential dynamic programming 14 3.3.2 DDP with augmented Lagrangian method 15 4 Experimental setup 17 4.1 Door state estimation 17 4.2 Multirotor robust controller 18 4.3 Hardware setup 19 5 Results 20 5.1 Simulation results 20 5.2 Experimental results 25 6 Conclusion 29Maste

    CONTROL STRATEGY OF MULTIROTOR PLATFORM UNDER NOMINAL AND FAULT CONDITIONS USING A DUAL-LOOP CONTROL SCHEME USED FOR EARTH-BASED SPACECRAFT CONTROL TESTING

    Get PDF
    Over the last decade, autonomous Unmanned Aerial Vehicles (UAVs) have seen increased usage in industrial, defense, research, and academic applications. Specific attention is given to multirotor platforms due to their high maneuverability, utility, and accessibility. As such, multirotors are often utilized in a variety of operating conditions such as populated areas, hazardous environments, inclement weather, etc. In this study, the effectiveness of multirotor platforms, specifically quadrotors, to behave as Earth-based satellite test platforms is discussed. Additionally, due to concerns over system operations under such circumstances, it becomes critical that multirotors are capable of operation despite experiencing undesired conditions and collisions which make the platform susceptible to on-board hardware faults. Without countermeasures to account for such faults, specifically actuator faults, a multirotors will experience catastrophic failure. In this thesis, a control strategy for a quadrotor under nominal and fault conditions is proposed. The process of defining the quadrotor dynamic model is discussed in detail. A dual-loop SMC/PID control scheme is proposed to control the attitude and position states of the nominal system. Actuator faults on-board the quadrotor are interpreted as motor performance losses, specifically loss in rotor speeds. To control a faulty system, an additive control scheme is implemented in conjunction with the nominal scheme. The quadrotor platform is developed via analysis of the various subcomponents. In addition, various physical parameters of the quadrotor are determined experimentally. Simulated and experimental testing showed promising results, and provide encouragement for further refinement in the future

    RISE-Based Adaptive Control with Mass-Inertia Parameter Estimation for Aerial Transportation of Multi-Rotor UAVs

    Full text link
    This paper proposes an adaptive tracking strategy with mass-inertia estimation for aerial transportation problems of multi-rotor UAVs. The dynamic model of multi-rotor UAVs with disturbances is firstly developed with a linearly parameterized form. Subsequently, a cascade controller with the robust integral of the sign of the error (RISE) terms is applied to smooth the control inputs and address bounded disturbances. Then, adaptive estimation laws for mass-inertia parameters are designed based on a filter operation. Such operation is introduced to extract estimation errors exploited to theoretically guarantee the finite-time (FT) convergence of estimation errors. Finally, simulations are conducted to verify the effectiveness of the designed controller. The results show that the proposed method provides better tracking and estimation performance than traditional adaptive controllers based on sliding mode control algorithms and gradient-based estimation strategies

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    Fault Diagnosis and Fault-Tolerant Control of Unmanned Aerial Vehicles

    Get PDF
    With the increasing demand for unmanned aerial vehicles (UAVs) in both military and civilian applications, critical safety issues need to be specially considered in order to make better and wider use of them. UAVs are usually employed to work in hazardous and complex environments, which may seriously threaten the safety and reliability of UAVs. Therefore, the safety and reliability of UAVs are becoming imperative for development of advanced intelligent control systems. The key challenge now is the lack of fully autonomous and reliable control techniques in face of different operation conditions and sophisticated environments. Further development of unmanned aerial vehicle (UAV) control systems is required to be reliable in the presence of system component faults and to be insensitive to model uncertainties and external environmental disturbances. This thesis research aims to design and develop novel control schemes for UAVs with consideration of all the factors that may threaten their safety and reliability. A novel adaptive sliding mode control (SMC) strategy is proposed to accommodate model uncertainties and actuator faults for an unmanned quadrotor helicopter. Compared with the existing adaptive SMC strategies in the literature, the proposed adaptive scheme can tolerate larger actuator faults without stimulating control chattering due to the use of adaptation parameters in both continuous and discontinuous control parts. Furthermore, a fuzzy logic-based boundary layer and a nonlinear disturbance observer are synthesized to further improve the capability of the designed control scheme for tolerating model uncertainties, actuator faults, and unknown external disturbances while preventing overestimation of the adaptive control parameters and suppressing the control chattering effect. Then, a cost-effective fault estimation scheme with a parallel bank of recurrent neural networks (RNNs) is proposed to accurately estimate actuator fault magnitude and an active fault-tolerant control (FTC) framework is established for a closed-loop quadrotor helicopter system. Finally, a reconfigurable control allocation approach is combined with adaptive SMC to achieve the capability of tolerating complete actuator failures with application to a modified octorotor helicopter. The significance of this proposed control scheme is that the stability of the closed-loop system is theoretically guaranteed in the presence of both single and simultaneous actuator faults

    Onboard Robust Nonlinear Control for Multiple Multirotor UAVs

    Get PDF
    In this thesis, we focus on developing and validating onboard robust nonlinear control approaches for multiple multirotor unmanned aerial vehicles (UAVs), for the promise of achieving nontrivial tasks, such as path following with aggressive maneuvers, navigation in complex environments with obstacles, and formation in group. To fulfill these challenging missions, the first concern comes with the stability of flight control for the aggressive UAV maneuvers with large tilted angles. In addition, robustness of control is highly desired in order to lead the multirotor UAVs to safe and accurate performance under disturbances. Furthermore, efficiency of control algorithm is a crucial element for the onboard implementation with limited computational capability. Finally, the potential to simultaneously control a group of UAVs in a stable fashion is required. All of these concerns motivate our work in this thesis in the following aspects. We first propose the problem of robust control for the nontrivial maneuvers of a multirotor UAV under disturbances. A complete framework is developed to enable the UAV to achieve the challenging tasks, which consists of a nonlinear attitude controller based on the solution of global output regulation problems for the rigid body rotations SO(3), a backstepping-like position controller, a six-dimensional (6D) wrench observer to estimate the unknown force and torque disturbances, and an online trajectory planner based on a model predictive control (MPC) method. We prove the strong convergence properties of the proposed method both in theory and via intensive real-robot experiments of aggressive waypoint navigation and large-tilted path following tasks in the presence of external disturbances, e.g. wind gusts. Secondly, we propose the problem of autonomous navigation of a multirotor UAV in complex scenarios. We present an effective and robust control approach, namely a fast MPC method with the inclusion of nonlinear obstacle avoiding constraints, and implement it onboard the UAV at 50Hz. The developed approach enables the navigation for a multirotor UAV in 3D environments with multiple obstacles, by autonomously deciding to fly over or around the randomly located obstacles. The third problem that is addressed in our work is formation control for a group of multirotor UAVs. We solve this problem by proposing a distributed formation control algorithm for multiple UAVs based on the solution of retraction balancing problem. The algorithm brings the whole group of UAVs simultaneously to a prescribed submanifold that determines the formation shape in an asymptotically stable fashion in 2D and 3D environments. We validate our proposed algorithm via a series of hardware-in-the-loop simulations and real-robot experiments in various formation cases of arbitrary time-varying (e.g. expanding, shrinking or moving) shapes. In the actual experiments, up to 4 multirotors have been implemented to form arbitrary triangular, rectangular and circular shapes drawn by the operator via a human-robot-interaction device. We have also carried out virtual tests using up to 6 onboard computers to achieve a spherical formation and a formation moving through obstacles.In dieser Arbeit konzentrieren wir uns auf die Entwicklung und Validierung von robusten nichtlinearen On-Bord Steuerungsansatzen fรผr mehrere unbemannte Multirotor-Luftfahrzeuge (UAVs), mit dem Ziel, nicht triviale Aufgaben zu erledigen wie z.B. Wegfolge mit aggressiven Manovern, Navigation in komplexen Umgebungen mit Hindernissen und Formationsflug in einer Gruppe. Um diese anspruchsvollen Missionen zu erfullen liegt unser Hauptaugenmerk bei der Stabilitรคt der Flugsteuerung fรผr aggressive UAV Manรถver mit steilen Lagewinkeln. Des weiteren ist Kontroll-robustheit sehr wรผnschenswert, um die Multirotor-UAVs unter Beeinflussung sicher und genau zu steuern. Daruber hinaus ist die Effizienz des Kontrollalgorithmus ein wichtiges Element fรผr die Onboard-Implementierung mit eingeschrankter Rechenfรคhigkeit. Abschliessend ist das Potenzial, gleichzeitig eine Gruppe von UAVs in stabiler Weise zu kontrollieren, erforderlich. All dies motiviert uns zur Arbeit an den folgenden Aspekten: Zuerst behandeln wir das Problem der robusten Steuerung nichttrivialer Manรถver eines Multirotor UAV unter Stรถreinfluss. Ein komplettes Framework wird entwickelt, welches dem UAV ermรถglicht diese anspruchsvollen Aufgaben zu bewรคltigen. Es beinhaltet einem nichtlinearen Lageregler, basierend auf der Lรถsung von globalen Ausgangsrege lungsproblemen fรผr Starrkรถrperrotationen SO(3), einem backstepping basierten Positionsregler, einen sechsdimensionalen (6D) wrench observer um die unbekannten Kraftund Drehmomenteinflusse zu schรคtzen, sowie einem Online-Trajektorienplaner basierend auf Model Predictive Control (MPC). Wir weisen die starken Konvergenzcharakteristiken der vorgeschlagenen Methode nach, sowohl in der Theorie als auchmittels intensiver Real-roboter-Experimente, mit aggressiver Wegpunktnavigation und Wegfindungsaufgaben in extremer Fluglage in Gegenwart externer Einflรผsse, z.B. Windbรถen. Als nรคchstes bearbeiten wir das Problem der autonomen Navigation eines Multirotor UAV in komplexen Szenarien. Wir stellen einen effektiven und robusten Steuerungsansatz dar, nรคmlich eine schnelle MPC-Methode mit der Einbeziehung von nichtlinearer Einschrรคnkungen zur Hindernisvermeidung, und implmenetieren diese an Bord des UAV mit 50Hz. Der entwickelte Ansatz ermรถglicht die Navigation eines Multirotor UAVs in 3D-Umgebungen mit mehreren Hindernissen, wobei autonom entschieden wir, รผber oder um die zufรคllig gelegenen Hindernisse zu fliegen. Das dritte Problem, das in unserer Arbeit angesprochen wird, ist die Bildungssteuerung fรผr eine Gruppe von Multirotor UAVs. Wir lรถsen dieses Problem, indem wir einen verteilten Formationskontrollalgorithmus fรผr mehrere UAVs auf der Grundlage der Lรถsung des Retraction Balancing Problems vorschlagen. Der Algorithmus bringt die ganze Gruppe von UAVs gleichzeitig auf eine vorgeschriebene Untermanigfaltigkeit, welche die Formation in asymtotisch stabiler Weise in 2D- und 3D-Umgebungen bestimmt. Wir validieren unseren vorgeschlagenen Algorithmus uber eine Reihe von Hardware-in-the- ยจ Loop-Simulationen und Real-Roboter-Experimente mit verschiedenen Formationsvarianten in beliebigen zeitverรคnderlichen (z. B. expandierenden, schrumpfenden oder bewegten) Formen. In den eigentlichen Experimenten wurden bis zu 4 Multirotoren eingesetzt, um beliebige dreieckige, rechteckige und kreisfรถrmige Formen zu bilden, die vom Bediener รผber eine Mensch-Roboter-Interaktionsvorrichtung vorgezeichnet wurden. Wir haben auch virtuelle Tests mit bis zu 6 Onboard-Computern durchgefรผhrt, um eine sphรคrische Formation und eine Formation zu erreichen, die sich durch Hindernisse. bewegt
    • โ€ฆ
    corecore