46 research outputs found

    New Delay-Range-Dependent Robust Exponential Stability Criteria of Uncertain Impulsive Switched Linear Systems with Mixed Interval Nondifferentiable Time-Varying Delays and Nonlinear Perturbations

    Get PDF
    We investigate the problem of robust exponential stability analysis for uncertain impulsive switched linear systems with time-varying delays and nonlinear perturbations. The time delays are continuous functions belonging to the given interval delays, which mean that the lower and upper bounds for the time-varying delays are available, but the delay functions are not necessary to be differentiable. The uncertainties under consideration are nonlinear time-varying parameter uncertainties and norm-bounded uncertainties, respectively. Based on the combination of mixed model transformation, Halanay inequality, utilization of zero equations, decomposition technique of coefficient matrices, and a common Lyapunov functional, new delay-range-dependent robust exponential stability criteria are established for the systems in terms of linear matrix inequalities (LMIs). A numerical example is presented to illustrate the effectiveness of the proposed method

    On almost sure stability of hybrid stochastic systems with mode-dependent interval delays

    Get PDF
    This note develops a criterion for almost sure stability of hybrid stochastic systems with mode-dependent interval time delays, which improves an existing result by exploiting the relation between the bounds of the time delays and the generator of the continuous-time Markov chain. The improved result shows that the presence of Markovian switching is quite involved in the stability analysis of delay systems. Numerical examples are given to verify the effectiveness

    Adaptive robust control for networked strict-feedback nonlinear systems with state and input quantization

    Get PDF
    Funding Information: Funding: This work was supported in part by the National Natural Science Foundation of China under Grant 62022031, Grant 61773135, Grant U20A20188; and in part by the Fundamental Research Funds for the Central Universities. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Backstepping method is a successful approach to deal with the systems in strict-feedback form. However, for networked control systems, the discontinuous virtual law caused by state quantization introduces huge challenges for its applicability. In this article, a quantized adaptive robust control approach in backsetpping framework is developed in this article for networked strict-feedback nonlinear systems with both state and input quantization. In order to prove the efficiency of the designed control scheme, a novel form of Lyapunov candidate function was constructed in the process of analyzing the stability, which is applicable for the systems with nondifferentiable virtual control law. In particular, the state and input quantizers can be in any form as long as they meet the sector-bound condition. The theoretic result shows that the tracking error is determined by the pregiven constants and quantization errors, which are also verified by the simulation results.publishersversionpublishe

    Stability analysis and controller design for switched time-delay systems

    Get PDF
    In this thesis, the stability analysis and control synthesis for uncertain switched time-delay systems are investigated. It is known that a wide variety of real-world systems are subject to uncertainty and also time-delay in their dynamics. These characteristics, if not taken into consideration in analysis and synthesis, can lead to important problems such as performance degradation or instability in a control system. On the other hand, the switching phenomenon often appears in numerous applications, where abrupt change is inevitable in the system model. Switching behavior in this type of systems can be triggered either by time, or by the state of the system. A theoretical framework to study various features of switched systems in the presence of uncertainty and time-delay (both neutral and retarded) would be of particular interest in important applications such as network control systems, power systems and communication networks. To address the problem of robust stability for the class of uncertain switched systems with unknown time-varying delay discussed above, sufficient conditions in the form of linear matrix inequalities (LMI) are derived. An adaptive switching control algorithm is then proposed for the stabilization of uncertain discrete time-delay systems subject to disturbance. It is assumed that the discrete time-delay system is highly uncertain, such that a single fixed controller cannot stabilize it effectively. Sufficient conditions are provided subsequently for the stability of switched time-delay systems with polytopic-type uncertainties. Moreover, an adaptive control scheme is provided to stabilize the uncertain neutral time-delay systems when the upper bounds on the system uncertainties are not available a priori . Simulations are provided throughout the thesis to support the theoretical result

    Global μ

    Get PDF
    The impulsive complex-valued neural networks with three kinds of time delays including leakage delay, discrete delay, and distributed delay are considered. Based on the homeomorphism mapping principle of complex domain, a sufficient condition for the existence and uniqueness of the equilibrium point of the addressed complex-valued neural networks is proposed in terms of linear matrix inequality (LMI). By constructing appropriate Lyapunov-Krasovskii functionals, and employing the free weighting matrix method, several delay-dependent criteria for checking the global μ-stability of the complex-valued neural networks are established in LMIs. As direct applications of these results, several criteria on the exponential stability, power-stability, and log-stability are obtained. Two examples with simulations are provided to demonstrate the effectiveness of the proposed criteria

    Active chatter control in high-speed milling processes

    Get PDF
    In present day manufacturing industry, an increasing demand for highprecision products at a high productivity level is seen. High-speed milling is a manufacturing technique which is commonly exploited to produce highprecision parts at a high productivity level for the aeroplane, automotive and mould and dies industry. The performance of a manufacturing process such as high-speed milling, indicated by the material removal rate, is limited by the occurrence of a dynamic instability phenomenon called chatter. The occurrence of chatter results in an inferior workpiece quality due to heavy vibrations of the cutter. Moreover, a high level of noise is produced and the tool wears out rapidly. Although different types of chatter exist, regenerative chatter is recognised as the most prevalent type of chatter. The occurrence of (regenerative) chatter has such a devastating effect on workpiece quality and tool wear that it should be avoidedat all times. The occurrence of chatter can be visualised in so-called stability lobes diagrams (sld). In an sld the chatter stability boundary between a stable cut (i.e. without chatter) and an unstable cut (i.e. with chatter) is visualised in terms of spindle speed and depth of cut. Using the information gathered in a sld, the machinist can select a chatter free operating point. In this thesis two problems are tackled. Firstly, due to e.g. heating of the spindle, tool wear, etc., the sld may vary in time. Consequently, a stable working point that was originally chosen by the machinist may become unstable. This requires a (controlled) adaptation of process parameters such that stability of the milling process is ensured (i.e. chatter is avoided) even under such changing process conditions. Secondly, the ever increasing demand for high-precision products at a high productivity level requires dedicated shaping of the chatter stability boundary. Such shaping of the sld should render working points (in terms of spindle speed and depth of cut) of high productivity feasible, while avoiding chatter. These problems require the design of dedicated control strategies that ensure stable high-speed milling operations with increased performance. In this work, two chatter control strategies are developed that guarantee high-speed chatter-free machining operations. The goal of the two chatter control strategies is, however, different. The first chatter control strategy guarantees chatter-free high-speed milling operations by automatic adaptation of spindle speed and feed (i.e. the feed is not stopped during the spindle speed transition). In this way, the high-speed milling process will remain stable despite changes in the process, e.g. due to heating of the spindle, tool wear, etc. To do so, an accurate and fast chatter detection algorithm is presented which predicts the occurrence of chatter before chatter marks are visible on the workpiece. Once the onset of chatter is detected, the developed controller adapts the spindle speed and feed such that a new chatter-free working point is attained. Experimental results confirm that by using this control strategy chatter-free machining is ensured. It is also shown experimentally that the detection algorithm is able to detect chatter before it is fully developed. Furthermore, the control strategy ensures that chatter is avoided, thereby ensuring a robust machining operation and a high surface quality. The second chatter control strategy is developed to design controllers that guarantee chatter-free cutting operations in an a priori defined range of process parameters (spindle speed and depth of cut) such that a higher productivity can be attained. Current (active) chatter control strategies for the milling process cannot provide such a strong guarantee of a priori stability for a predefined range of working points. The methodology is based on a robust control approach using µ-synthesis, where the most important process parameters (spindle speed and depth of cut) are treated as uncertainties. The proposed methodology will allow the machinist to define a desired working range (in spindle speed and depth of cut) and lift the sld locally in a dedicated fashion. Finally, experiments have been performed to validate the working principle of the active chatter control strategy in practice. Hereto, a milling spindle with an integrated active magnetic bearing is considered. Based on the obtained experimental results, it can be stated that the active chatter control methodology, as presented in this thesis, can indeed be applied to design controllers, which alter the sld such that a pre-defined domain of working points is stabilised. Results from milling tests underline this conclusion. By using the active chatter controller working points with a higher material removal rate become feasible while avoiding chatter. To summarise, the control strategies developed in this thesis, ensure robust chatter-free high-speed milling operations where, by dedicated shaping of the chatter stability boundary, working points with a higher productivity are attained

    Stability and stabilization of sampled-data control for lure systems

    Get PDF
    Este trabalho apresenta um novo método para a análise de estabilidade e estabilização de sistemas do tipo Lure com controle amostrado, sujeitos a amostragem aperiódica e não linearidades que são limitadas em setor e restritas em derivada, em ambos contextos global e regional. Assume-se que os estados da planta estão disponíveis para medição e que as não linearidades são conhecidas, o que leva a uma formulação mais geral do problema. Os estados são adquiridos por um controlador digital que atualiza a entrada de controle em instantes de tempo discretos e aperiódicos, mantendo-a constante entre dois instantes sucessivos de amostragem. A abordagem apresentada neste trabalho é baseada no uso de uma nova classe de looped-functionals e em uma função do tipo Lure generalizada, que leva a condições de estabilidade e estabilização que são escritas na forma de desigualdades matriciais lineares (LMIs) e quasi-LMIs, respectivamente. Com base nestas condições, problemas de otimização são formulados com o objetivo de computar o intervalo máximo entre amostragens ou os limites máximos do setor para os quais a estabilidade assintótica da origem do sistema de dados amostrados em malha fechada é garantida. No caso em que as condições de setor são válidas apenas localmente, a solução desses problemas também fornece uma estimativa da região de atração para as trajetórias em tempo contínuo do sistema em malha fechada. Como as condições de síntese são quasi-LMIs, um algoritmo de otimização por enxame de partículas é proposto para lidar com as não linearidades envolvidas nos problemas de otimização, que surgem do produto de algumas variáveis de decisão. Exemplos numéricos são apresentados ao longo do trabalho para destacar as potencialidades do método.This work presents a new method for stability analysis and stabilization of sampleddata controlled Lure systems, subject to aperiodic sampling and nonlinearities that are sector bounded and slope restricted, in both global and regional contexts. We assume that the states of the plant are available for measurement and that the nonlinearities are known, which leads to a more general formulation of the problem. The states are acquired by a digital controller which updates the control input at aperiodic discrete-time instants, keeping it constant between successive sampling instants. The approach here presented is based on the use of a new class of looped-functionals and a generalized Luretype function, which leads to stability and stabilization conditions that are written in the form of Linear Matrix Inequalities (LMIs) and quasi-LMIs, respectively. On this basis, optimization problems are formulated aiming to compute the maximal intersampling interval or the maximal sector bounds for which the asymptotic stability of the origin of the sampled-data closed-loop system is guaranteed. In the case where the sector conditions hold only locally, the solution of these problems also provide an estimate of the region of attraction for the continuous-time trajectories of the closed-loop system. As the synthesis conditions are quasi-LMIs, a Particle Swarm Optimization (PSO) algorithm is proposed to deal with the involved nonlinearities in the optimization problems, which arise from the product of some decision variables. Numerical examples are presented throughout the work to highlight the potentialities of the method

    A vision-based optical character recognition system for real-time identification of tractors in a port container terminal

    Get PDF
    Automation has been seen as a promising solution to increase the productivity of modern sea port container terminals. The potential of increase in throughput, work efficiency and reduction of labor cost have lured stick holders to strive for the introduction of automation in the overall terminal operation. A specific container handling process that is readily amenable to automation is the deployment and control of gantry cranes in the container yard of a container terminal where typical operations of truck identification, loading and unloading containers, and job management are primarily performed manually in a typical terminal. To facilitate the overall automation of the gantry crane operation, we devised an approach for the real-time identification of tractors through the recognition of the corresponding number plates that are located on top of the tractor cabin. With this crucial piece of information, remote or automated yard operations can then be performed. A machine vision-based system is introduced whereby these number plates are read and identified in real-time while the tractors are operating in the terminal. In this paper, we present the design and implementation of the system and highlight the major difficulties encountered including the recognition of character information printed on the number plates due to poor image integrity. Working solutions are proposed to address these problems which are incorporated in the overall identification system.postprin

    Estimation and control of non-linear and hybrid systems with applications to air-to-air guidance

    Get PDF
    Issued as Progress report, and Final report, Project no. E-21-67

    Distributed Control Methods for Integrating Renewable Generations and ICT Systems

    Get PDF
    With increased energy demand and decreased fossil fuels usages, the penetration of distributed generators (DGs) attracts more and more attention. Currently centralized control approaches can no longer meet real-time requirements for future power system. A proper decentralized control strategy needs to be proposed in order to enhance system voltage stability, reduce system power loss and increase operational security. This thesis has three key contributions: Firstly, a decentralized coordinated reactive power control strategy is proposed to tackle voltage fluctuation issues due to the uncertainty of output of DG. Case study shows results of coordinated control methods which can regulate the voltage level effectively whilst also enlarging the total reactive power capability to reduce the possibility of active power curtailment. Subsequently, the communication system time-delay is considered when analyzing the impact of voltage regulation. Secondly, a consensus distributed alternating direction multiplier method (ADMM) algorithm is improved to solve the optimal power ow (OPF) problem. Both synchronous and asynchronous algorithms are proposed to study the performance of convergence rate. Four different strategies are proposed to mitigate the impact of time-delay. Simulation results show that the optimization of reactive power allocation can minimize system power loss effectively and the proposed weighted autoregressive (AR) strategies can achieve an effective convergence result. Thirdly, a neighboring monitoring scheme based on the reputation rating is proposed to detect and mitigate the potential false data injection attack. The simulation results show that the predictive value can effectively replace the manipulated data. The convergence results based on the predictive value can be very close to the results of normal case without cyber attack
    corecore