2,688 research outputs found

    Computational fluid dynamics model of a quad-rotor helicopter for dynamic analysis

    Get PDF
    The control and performance of a quad-rotor helicopter UAV is greatly influenced by its aerodynamics, which in turn is affected by the interactions with features in its remote environment. This paper presents details of Computational Fluid Dynamics (CFD) simulation and analysis of a quadrotor helicopter. It starts by presenting how SolidWorks software is used to develop a 3-D Computer Aided Design (CAD) model of the quad-rotor helicopter, then describes how CFD is used as a computer based mathematical modelling tool to simulate and analyze the effects of wind flow patterns on the performance and control of the quadrotor helicopter. For the purpose of developing a robust adaptive controller for the quad-rotor helicopter to withstand any environmental constraints, which is not within the scope of this paper; this work accurately models the quad-rotor static and dynamic characteristics from a limited number of time-accurate CFD simulations

    Aerodynamic Response of a Hovering Rotor to Ramp Changes in Pitch Input

    Get PDF
    Under transient conditions, a helicopter rotor generates a complex, time-dependent pattern of shed and trailed vorticity in its wake that has profound eects on its loading. To examine these eects, the response of a two-bladed hovering rotor to a ramp change in collective pitch is investigated using three dierent computational approaches. Solutions obtained using a Compressible Reynolds Averaged Navier{Stokes ap- proach are compared to results obtained from lifting-line theory coupled to an Eulerian Vorticity Transport Model, and from a simple single-state dynamic in ow model. The dierent numerical approaches yield very similar predictions of the thrust response of the rotor to ramp changes in collective pitch, as long as the ramp rates are small. This suggests that the basic underlying ow physics is properly represented by all the approaches. For more rapid ramp rates, an additional delay in the aerodynamic response of the rotor, that is related to the nite extent of the wake during its early history, is predicted by the Navier{Stokes and Vorticity Transport approaches. Even though the evolution of the wake of the rotor is strongly three dimensional and highly unsteady, the predictions of the Navier{Stokes and lifting-line models agree very closely as long as the blades of the rotor do not stall. In the pre-stall regime, a quasi two-dimensional representation of the blade aerodynamics thus appears adequate for predicting the performance of such systems even under highly transient conditions. When ow separation occurs, the resulting three dimen- sionality of the blade aerodynamics forces the predictions of the Navier{Stokes and lifting-line approaches to diverge, however. The characterization of the wake interactions and stall propagation mechanisms that are presented in this study oers some insight into the fundamental uid dynamic mechanisms that govern the transient aerodynamic response of a rotor to control inputs, and provides some quantication of the limits of applicability of some popular current approaches to rotor aerodynamic analysis

    Aerodynamic response of a hovering rotor to ramp change in pitch input

    Get PDF
    Under transient conditions, a helicopter rotor generates a complex, time-dependent pattern of shed and trailed vorticity in its wake that has profound effects on its loading. To examine these effects, the response of a two-bladed hovering rotor to a ramp change in collective pitch is investigated using three different computational approaches. Solutions obtained using a Compressible Reynolds Averaged Navier-Stokes approach are compared to results obtained from lifting-line theory coupled to an Eulerian Vorticity Transport Model, and from a simple single-state dynamic inflow model. The different numerical approaches yield very similar predictions of the thrust response of the rotor to ramp changes in collective pitch, as long as the ramp rates are small. This suggests that the basic underlying flow physics is properly represented by all the approaches. For more rapid ramp rates, an additional delay in the aerodynamic response of the rotor, that is related to the finite extent of the wake during its early history, is predicted by the Navier-Stokes and Vorticity Transport approaches. Even though the evolution of the wake of the rotor is strongly three dimensional and highly unsteady, the predictions of the Navier-Stokes and lifting-line models agree very closely as long as the blades of the rotor do not stall. In the pre-stall regime, a quasi two-dimensional representation of the blade aerodynamics thus appears adequate for predicting the performance of such systems even under highly transient conditions. When flow separation occurs, the resulting three dimensionality of the blade aerodynamics forces the predictions of the Navier-Stokes and lifting-line approaches to diverge, however. The characterization of the wake interactions and stall propagation mechanisms that are presented in this study offers some insight into the fundamental fluid dynamic mechanisms that govern the transient aerodynamic response of a rotor to control inputs, and provides some quantication of the limits of applicability of some popular current approaches to rotor aerodynamic analysis

    Mars Science Helicopter Conceptual Design

    Get PDF
    Robotic planetary aerial vehicles increase the range of terrain that can be examined, compared to traditional landers and rovers, and have more near-surface capability than orbiters. Aerial mobility is a promising possibility for planetary exploration as it reduces the challenges that difficult obstacles pose to ground vehicles. The first use of a rotorcraft for a planetary mission will be in 2021, when the Mars Helicopter technology demonstrator will be deployed from the Mars 2020 rover. The Jet Propulsion Laboratory and NASA Ames Research Center are exploring possibilities for a Mars Science Helicopter, a second-generation Mars rotorcraft with the capability of conducting science investigations independently of a lander or rover (although this type of vehicle could also be used assist rovers or landers in future missions). This report describes the conceptual design of Mars Science Helicopters. The design process began with coaxial-helicopter and hexacopter configurations, with a payload in the range of two to three kilograms and an overall vehicle mass of approximately twenty kilograms. Initial estimates of weight and performance were based on the capabilities of the Mars Helicopter. Rotorcraft designs for Mars are constrained by the dimensions of the aeroshell for the trip to the planet, requiring attention to the aircraft packaging in order to maximize the rotor dimensions and hence overall performance potential. Aerodynamic performance optimization was conducted, particularly through airfoils designed specifically for the low Reynolds number and high Mach number inherent in operation on Mars. The final designs show a substantial capability for science operations on Mars: a 31 kg hexacopter that fits within a 2.5 m diameter aeroshell could carry a 5 kg payload for 10 min of hover time or over a range of 5 km

    Aeronautical engineering: A continuing bibliography with indexes (supplement 275)

    Get PDF
    This bibliography lists 379 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jan. 1991

    Applied Analysis and Synthesis of Complex Systems: Proceedings of the IIASA-Kyoto University Joint Seminar, June 28-29, 2004

    Get PDF
    This two-day seminar aimed at introducing the new development of the COE by Kyoto University to IIASA and discussing general modeling methodologies for complex systems consisting of many elements, mostly via nonlinear, large-scale interactions. We aimed at clarifying fundamental principles in complex phenomena as well as utilizing and synthesizing the knowledge derived out of them. The 21st Century COE (Center of Excellence) Program is an initiative by the Japanese Ministry of Education, Culture, Science and Technology (MEXT) to support universities establishing discipline-specific international centers for education and research, and to enhance the universities to be the world's apex of excellence with international competitiveness in the specific research areas. Our program of "Research and Education on Complex Functional Mechanical Systems" is successfully selected to be awarded the fund for carrying out new research and education as Centers of Excellence in the field of mechanical engineering in 2003 (five-year project), and is expected to lead Japanese research and education, and endeavor to be the top in the world. The program covers general backgrounds in diverse fields as well as a more in-depth grasp of specific branches such as complex system modeling and analysis of the problems including: nonlinear dynamics, micro-mesoscopic physics, turbulent transport phenomena, atmosphere-ocean systems, robots, human-system interactions, and behaviors of nano-composites and biomaterials. Fundamentals of those complex functional mechanical systems are macroscopic phenomena of complex systems consisting of microscopic elements, mostly via nonlinear, large-scale interactions, which typically present collective behavior such as self-organization, pattern formation, etc. Such phenomena can be observed or created in every aspect of modern technologies. Especially, we are focusing upon; turbulent transport phenomena in climate modeling, dynamical and chaotic behaviors in control systems and human-machine systems, and behaviors of mechanical materials with complex structures. As a partial attainment of this program, IIASA and Kyoto University have exchanged Consortia Agreement at the beginning of the program in 2003, and this seminar was held to introduce the outline of the COE program of Kyoto University to IIASA researchers and to deepen the shared understandings on novel complex system modeling and analysis, including novel climate modeling and carbonic cycle management, through joint academic activities by mechanical engineers and system engineers. In this seminar, we invited a distinguished researcher in Europe as a keynote speaker and our works attained so far in the project were be presented by the core members of the project as well as by the other contributing members who participated in the project. All IIASA research staff and participants of YSSP (Young Scientist Summer Program) were cordially invited to attend this seminar to discuss general modeling methodologies for complex systems

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Aeronautical engineering: A continuing bibliography with indexes (supplement 286)

    Get PDF
    This bibliography lists 845 reports, articles, and other documents introduced into the NASA scientific and technical information system in Dec. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore