206 research outputs found

    Aerial-Ground collaborative sensing: Third-Person view for teleoperation

    Full text link
    Rapid deployment and operation are key requirements in time critical application, such as Search and Rescue (SaR). Efficiently teleoperated ground robots can support first-responders in such situations. However, first-person view teleoperation is sub-optimal in difficult terrains, while a third-person perspective can drastically increase teleoperation performance. Here, we propose a Micro Aerial Vehicle (MAV)-based system that can autonomously provide third-person perspective to ground robots. While our approach is based on local visual servoing, it further leverages the global localization of several ground robots to seamlessly transfer between these ground robots in GPS-denied environments. Therewith one MAV can support multiple ground robots on a demand basis. Furthermore, our system enables different visual detection regimes, and enhanced operability, and return-home functionality. We evaluate our system in real-world SaR scenarios.Comment: Accepted for publication in 2018 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR

    Safety-Aware Human-Robot Collaborative Transportation and Manipulation with Multiple MAVs

    Full text link
    Human-robot interaction will play an essential role in various industries and daily tasks, enabling robots to effectively collaborate with humans and reduce their physical workload. Most of the existing approaches for physical human-robot interaction focus on collaboration between a human and a single ground robot. In recent years, very little progress has been made in this research area when considering aerial robots, which offer increased versatility and mobility compared to their grounded counterparts. This paper proposes a novel approach for safe human-robot collaborative transportation and manipulation of a cable-suspended payload with multiple aerial robots. We leverage the proposed method to enable smooth and intuitive interaction between the transported objects and a human worker while considering safety constraints during operations by exploiting the redundancy of the internal transportation system. The key elements of our system are (a) a distributed payload external wrench estimator that does not rely on any force sensor; (b) a 6D admittance controller for human-aerial-robot collaborative transportation and manipulation; (c) a safety-aware controller that exploits the internal system redundancy to guarantee the execution of additional tasks devoted to preserving the human or robot safety without affecting the payload trajectory tracking or quality of interaction. We validate the approach through extensive simulation and real-world experiments. These include as well the robot team assisting the human in transporting and manipulating a load or the human helping the robot team navigate the environment. To the best of our knowledge, this work is the first to create an interactive and safety-aware approach for quadrotor teams that physically collaborate with a human operator during transportation and manipulation tasks.Comment: Guanrui Li and Xinyang Liu contributed equally to this pape

    Shared control of an aerial cooperative transportation system with a cable-suspended payload

    Get PDF
    This paper presents a novel bilateral shared framework for a cooperative aerial transportation and manipulation system composed by a team of micro aerial vehicles with a cable-suspended payload. The human operator is in charge of steering the payload and he/she can also change online the desired shape of the formation of robots. At the same time, an obstacle avoidance algorithm is in charge of avoiding collisions with the static environment. The signals from the user and from the obstacle avoidance are blended together in the trajectory generation module, by means of a tracking controller and a filter called dynamic input boundary (DIB). The DIB filters out the directions of motions that would bring the system too close to singularities, according to a suitable metric. The loop with the user is finally closed with a force feedback that is informative of the mismatch between the operator’s commands and the trajectory of the payload. This feedback intuitively increases the user’s awareness of obstacles or configurations of the system that are close to singularities. The proposed framework is validated by means of realistic hardware-in-the-loop simulations with a person operating the system via a force-feedback haptic interface

    Whole-Body Control of a Mobile Manipulator for Passive Collaborative Transportation

    Full text link
    Human-robot collaborative tasks foresee interactions between humans and robots with various degrees of complexity. Specifically, for tasks which involve physical contact among the agents, challenges arise in the modelling and control of such interaction. In this paper we propose a control architecture capable of ensuring a flexible and robustly stable physical human-robot interaction, focusing on a collaborative transportation task. The architecture is deployed onto a mobile manipulator, modelled as a whole-body structure, which aids the operator during the transportation of an unwieldy load. Thanks to passivity techniques, the controller adapts its interaction parameters online while preserving robust stability for the overall system, thus experimentally validating the architecture

    Force-based Pose Regulation of a Cable-Suspended Load Using UAVs with Force Bias

    Get PDF
    • …
    corecore