19 research outputs found

    The Impact of Sensor Characteristics and Data Availability on Remote Sensing Based Change Detection

    Get PDF
    Land cover and land use change are among the major drivers of global change. In a time of mounting challenges for sustainable living on our planet any research benefits from interdisciplinary collaborations to gain an improved understanding of the human-environment system and to develop suitable and improve existing measures of natural resource management. This includes comprehensive understanding of land cover and land use changes, which is fundamental to mitigate global change. Remote sensing technology is essential for the analyses of the land surface (and hence related changes) because it offers cost-effective ways of collecting data simultaneously over large areas. With increasing variety of sensors and better data availability, the application of remote sensing as a means to assist in modeling, to support monitoring, and to detect changes at various spatial and temporal scales becomes more and more feasible. The relationship between the nature of the changes on the land surface, the sensor properties, and the conditions at the time of acquisition influences the potential and quality of land cover and land use change detection. Despite the wealth of existing change detection research, there is a need for new methodologies in order to efficiently explore the huge amount of data acquired by remote sensing systems with different sensor characteristics. The research of this thesis provides solutions to two main challenges of remote sensing based change detection. First, geometric effects and distortions occur when using data taken under different sun-target-sensor geometries. These effects mainly occur if sun position and/or viewing angles differ between images. This challenge was met by developing a theoretical framework of bi-temporal change detection scenarios. The concept includes the quantification of distortions that can occur in unfavorable situations. The invention and application of a new method – the Robust Change Vector Analysis (RCVA) – reduced the detection of false changes due to these distortions. The quality and robustness of the RCVA were demonstrated in an example of bi-temporal cross-sensor change detection in an urban environment in Cologne, Germany. Comparison with a state-of-the-art method showed better performance of RCVA and robustness against thresholding. Second, this thesis provides new insights into how to optimize the use of dense time series for forest cover change detection. A collection of spectral indices was reviewed for their suitability to display forest structure, development, and condition at a study site on Vancouver Island, British Columbia, Canada. The spatio-temporal variability of the indices was analyzed to identify those indices, which are considered most suitable for forest monitoring based on dense time series. Amongst the indices, the Disturbance Index (DI) was found to be sensitive to the state of the forest (i.e., forest structure). The Normalized Difference Moisture Index (NDMI) was found to be spatio-temporally stable and to be the most sensitive index for changes in forest condition. Both indices were successfully applied to detect abrupt forest cover changes. Further, this thesis demonstrated that relative radiometric normalization can obscure actual seasonal variation and long-term trends of spectral signals and is therefore not recommended to be incorporated in the time series pre-processing of remotely-sensed data. The main outcome of this part of the presented research is a new method for detecting discontinuities in time series of spectral indices. The method takes advantage of all available information in terms of cloud-free pixels and hence increases the number of observations compared to most existing methods. Also, the first derivative of the time series was identified (together with the discontinuity measure) as a suitable variable to display and quantify the dynamic of dense Landsat time series that cannot be observed with less dense time series. Given that these discontinuities are predominantly related to abrupt changes, the presented method was successfully applied to clearcut harvest detection. The presented method detected major events of forest change at unprecedented temporal resolution and with high accuracy (93% overall accuracy). This thesis contributes to improved understanding of bi-temporal change detection, addressing image artifacts that result from flexible acquisition features of modern satellites (e.g., off-nadir capabilities). The demonstrated ability to efficiently analyze cross-sensor data and data taken under unfavorable conditions is increasingly important for the detection of many rapid changes, e.g., to assist in emergency response. This thesis further contributes to the optimized use of remotely sensed time series for improving the understanding, accuracy, and reliability of forest cover change detection. Additionally, the thesis demonstrates the usability of and also the necessity for continuity in medium spatial resolution satellite imagery, such as the Landsat data, for forest management. Constellations of recently launched (e.g., Landsat 8 OLI) and upcoming sensors (e.g., Sentinel-2) will deliver new opportunities to apply and extend the presented methodologies.Der Einfluss von Sensorcharakteristik und Datenverfügbarkeit auf die fernerkundungsbasierte Veränderungsdetektion Landbedeckungs- und Landnutzungswandel gehören zu den Haupttriebkräften des Globalen Wandels. In einer Zeit, in der ein nachhaltiges Leben auf unserem Planeten zu einer wachsenden Herausforderung wird, profitiert die Wissenschaft von interdisziplinärer Zusammenarbeit, um ein besseres Verständnis der Mensch-Umwelt-Beziehungen zu erlangen und um verbesserte Maßnahmen des Ressourcenmanagements zu entwickeln. Dazu gehört auch ein erweitertes Verständnis von Landbedeckungs- und Landnutzungswandel, das elementar ist, um dem Globalen Wandel zu begegnen. Die Fernerkundungstechnologie ist grundlegend für die Analyse der Landoberfläche und damit verknüpften Veränderungen, weil sie in der Lage ist, große Flächen gleichzeitig zu erfassen. Mit zunehmender Sensorenvielfalt und besserer Datenverfügbarkeit gewinnt Fernerkundung bei der Modellierung, beim Monitoring sowie als Mittel zur Erkennung von Veränderungen in verschiedenen räumlichen und zeitlichen Skalen zunehmend an Bedeutung. Das Wirkungsgeflecht zwischen der Art von Veränderungen der Landoberfläche, Sensoreigenschaften und Aufnahmebedingungen beeinflusst das Potenzial und die Qualität fernerkundungsbasierter Landbedeckungs- und Landnutzungsveränderungs-detektion. Trotz der Fülle an bestehenden Forschungsleistungen zur Veränderungsdetektion besteht ein dringender Bedarf an neuen Methoden, die geeignet sind, das große Aufkommen von Daten unterschiedlicher Sensoren effizient zu nutzen. Die in dieser Abschlussarbeit durchgeführte Forschung befasst sich mit zwei aktuellen Problemfeldern der fernerkundungsbasierten Veränderungsdetektion. Das erste sind die geometrischen Effekte und Verzerrungen, die auftreten, wenn Daten genutzt werden, die unter verschiedenen Sonne-Zielobjekt-Sensor-Geometrien aufgenommen wurden. Diese Effekte treten vor allem dann auf, wenn unterschiedliche Sonnenstände und/oder unterschiedliche Einfallswinkel der Satelliten genutzt werden. Der Herausforderung wurde begegnet, indem ein theoretisches Konzept von Szenarien dargelegt wurde, die bei der bi-temporalen Veränderungsdetektion auftreten können. Das Konzept beinhaltet die Quantifizierung der Verzerrungen, die in ungünstigen Fällen auftreten können. Um die Falscherkennung von Veränderungen in Folge der resultierenden Verzerrungen zu reduzieren, wurde eine neue Methode entwickelt – die Robust Change Vector Analysis (RCVA). Die Qualität der Methode wird an einem Beispiel der Veränderungsdetektion im urbanen Raum (Köln, Deutschland) aufgezeigt. Ein Vergleich mit einer anderen gängigen Methode zeigt bessere Ergebnisse für die neue RCVA und untermauert deren Robustheit gegenüber der Schwellenwertbestimmung. Die zweite Herausforderung, mit der sich die vorliegende Arbeit befasst, betrifft die optimierte Nutzung von dichten Zeitreihen zur Veränderungsdetektion von Wäldern. Eine Auswahl spektraler Indizes wurde hinsichtlich ihrer Tauglichkeit zur Erfassung von Waldstruktur, Waldentwicklung und Waldzustand in einem Untersuchungsgebiet auf Vancouver Island, British Columbia, Kanada, bewertet. Um die Einsatzmöglichkeiten der Indizes für dichte Zeitreihen bewerten zu können, wurde ihre raum-zeitliche Variabilität untersucht. Der Disturbance Index (DI) ist ein Index, der sensitiv für das Stadium eines Waldes ist (d. h. seine Struktur). DerNormalized Difference Moisture Index (NDMI) ist raum-zeitlich stabil und zudem am sensitivsten für Veränderungen des Waldzustands. Beide Indizes wurden erfolgreich zur Erkennung von abrupten Veränderungen getestet. In der vorliegenden Arbeit wird aufgezeigt, dass die relative radiometrische Normierung saisonale Variabilität und Langzeittrends von Zeitreihen spektraler Signale verzerrt. Die relative radiometrische Normierung wird daher nicht zur Vorprozessierung von Fernerkundungszeitreihen empfohlen. Das wichtigste Ergebnis dieser Studie ist eine neue Methode zur Erkennung von Diskontinuitäten in Zeitreihen spektraler Indizes. Die Methode nutzt alle wolkenfreien, ungestörten Beobachtungen (d. h. unabhängig von der Gesamtbewölkung in einem Bild) in einer Zeitreihe und erhöht dadurch die Anzahl an Beobachtungen im Vergleich zu anderen Methoden. Die erste Ableitung und die Messgröße zur Erfassung der Diskontinuitäten sind gut geeignet, um die Dynamik dichter Zeitreihen zu beschreiben und zu quantifizieren. Dies ist mit weniger dichten Zeitreihen nicht möglich. Da diese Diskontinuitäten im Untersuchungsgebiet üblicherweise abrupter Natur sind, ist die Methode gut geeignet, um Kahlschläge zu erfassen. Die hier dargelegte neue Methode detektiert Waldbedeckungsveränderungen mit einzigartiger zeitlicher Auflösung und hoher Genauigkeit (93% Gesamtgenauigkeit). Die vorliegende Arbeit trägt zu einem verbesserten Verständnis bi-temporaler Veränderungsdetektion bei, indem Bildartefakte berücksichtigt werden, die infolge der Flexibilität moderner Sensoren entstehen können. Die dargestellte Möglichkeit, Daten zu analysieren, die von unterschiedlichen Sensoren stammen und die unter ungünstigen Bedingungen aufgenommen wurden, wird zukünftig bei der Erfassung von schnellen Veränderungen an Bedeutung gewinnen, z. B. bei Katastropheneinsätzen. Ein weiterer Beitrag der vorliegenden Arbeit liegt in der optimierten Anwendung von Fernerkundungszeitreihen zur Verbesserung von Verständnis, Genauigkeit und Verlässlichkeit der Waldveränderungsdetektion. Des Weiteren zeigt die Arbeit den Nutzen und die Notwendigkeit der Fortführung von Satellitendaten mit mittlerer Auflösung (z. B. Landsat) für das Waldmanagement. Konstellationen kürzlich gestarteter (z. B. Landsat 8 OLI) und zukünftiger Sensoren (z. B. Sentinel-2) werden neue Möglichkeiten zur Anwendung und Optimierung der hier vorgestellten Methoden bieten

    Self-supervised Multisensor Change Detection

    Get PDF
    Most change detection methods assume that pre-change and post-change images are acquired by the same sensor. However, in many real-life scenarios, e.g., natural disaster, it is more practical to use the latest available images before and after the occurrence of incidence, which may be acquired using different sensors. In particular, we are interested in the combination of the images acquired by optical and Synthetic Aperture Radar (SAR) sensors. SAR images appear vastly different from the optical images even when capturing the same scene. Adding to this, change detection methods are often constrained to use only target image-pair, no labeled data, and no additional unlabeled data. Such constraints limit the scope of traditional supervised machine learning and unsupervised generative approaches for multi-sensor change detection. Recent rapid development of self-supervised learning methods has shown that some of them can even work with only few images. Motivated by this, in this work we propose a method for multi-sensor change detection using only the unlabeled target bi-temporal images that are used for training a network in self-supervised fashion by using deep clustering and contrastive learning. The proposed method is evaluated on four multi-modal bi-temporal scenes showing change and the benefits of our self-supervised approach are demonstrated

    Comparison of Five Spatio-Temporal Satellite Image Fusion Models over Landscapes with Various Spatial Heterogeneity and Temporal Variation

    Get PDF
    In recent years, many spatial and temporal satellite image fusion (STIF) methods have been developed to solve the problems of trade-off between spatial and temporal resolution of satellite sensors. This study, for the first time, conducted both scene-level and local-level comparison of five state-of-art STIF methods from four categories over landscapes with various spatial heterogeneity and temporal variation. The five STIF methods include the spatial and temporal adaptive reflectance fusion model (STARFM) and Fit-FC model from the weight function-based category, an unmixing-based data fusion (UBDF) method from the unmixing-based category, the one-pair learning method from the learning-based category, and the Flexible Spatiotemporal DAta Fusion (FSDAF) method from hybrid category. The relationship between the performances of the STIF methods and scene-level and local-level landscape heterogeneity index (LHI) and temporal variation index (TVI) were analyzed. Our results showed that (1) the FSDAF model was most robust regardless of variations in LHI and TVI at both scene level and local level, while it was less computationally efficient than the other models except for one-pair learning; (2) Fit-FC had the highest computing efficiency. It was accurate in predicting reflectance but less accurate than FSDAF and one-pair learning in capturing image structures; (3) One-pair learning had advantages in prediction of large-area land cover change with the capability of preserving image structures. However, it was the least computational efficient model; (4) STARFM was good at predicting phenological change, while it was not suitable for applications of land cover type change; (5) UBDF is not recommended for cases with strong temporal changes or abrupt changes. These findings could provide guidelines for users to select appropriate STIF method for their own applications

    Deep Learning for Time-Series Analysis of Optical Satellite Imagery

    Get PDF
    In this cumulative thesis, I cover four papers on time-series analysis of optical satellite imagery. The contribution is split into two parts. The first one introduces DENETHOR and DynamicEarthNet, two landmark datasets with high-quality ground truth data for agricultural monitoring and change detection. Second, I introduce SiROC and SemiSiROC, two methodological contributions to label-efficient change detection

    Near real-time deforestation detection in Malaysia and Indonesia using change vector analysis with three sensors

    Get PDF
    Malaysia and Indonesia have been affected by deforestation caused in great part by the proliferation of oil palm plantations. To survey this loss of forest, several studies have monitored these southeast Asian nations with satellite remote sensing alert systems. The methods used have shown potential for this approach, but they are limited by imagery with coarse spatial resolution, low revisit times, and cloud cover. The objective of this research is to improve near real-time operational deforestation detection by combining three sensors: Sentinel-1, Sentinel-2 and Landsat-8. We used Change Vector Analysis to detect changes between non-affected forest and images under analysis. The results were validated using 166 plots of undisturbed forest and confirmed deforestation events throughout Sabah Malaysian State, and from 70 points from drone pictures in Sumatra, Indonesia. Sentinel-2 and Landsat-8 yielded sufficient results in terms of accuracy (less than 11% of commission and omission error). Sentinel-1 had lower accuracy (14% of commission error and 28% of omission error), probably resulting from geometric distortions and speckle noise. During the high cloud-cover season optical sensors took about twice the time to detect deforestation compared to Sentinel-1 which was not affected by cloud cover. By combining the three sensors, we detected deforestations about 8 days after forest clearing events. Deforestations were only detectable during approximately the first 100 days, before bare soils were often coved by legume crop. Our results indicate that near real-time deforestation detection can reveal most events, but the number of false detections could be improved using a multiple event detection process

    Multi-scale diff-changed feature fusion network for hyperspectral image change detection.

    Get PDF
    For hyperspectral images (HSI) change detection (CD), multi-scale features are usually used to construct the detection models. However, the existing studies only consider the multi-scale features containing changed and unchanged components, which is difficult to represent the subtle changes between bi-temporal HSIs in each scale. To address this problem, we propose a multi-scale diff-changed feature fusion network (MSDFFN) for HSI CD, which improves the ability of feature representation by learning the refined change components between bi-temporal HSIs under different scales. In this network, a temporal feature encoder-decoder sub-network, which combines a reduced inception module and a cross-layer attention module to highlight the significant features, is designed to extract the temporal features of HSIs. A bidirectional diff-changed feature representation module is proposed to learn the fine changed features of bi-temporal HSIs at various scales to enhance the discriminative performance of the subtle change. A multi-scale attention fusion module is developed to adaptively fuse the changed features of various scales. The proposed method can not only discover the subtle change of bi-temporal HSIs but also improve the discriminating power for HSI CD. Experimental results on three HSI datasets show that MSDFFN outperforms a few state-of-the-art methods
    corecore