66 research outputs found

    Aggregatable Certificateless Designated Verifier Signature

    Get PDF
    In recent years, the Internet of Things (IoT) devices have become increasingly deployed in many industries and generated a large amount of data that needs to be processed in a timely and efficient manner. Using aggregate signatures, it provides a secure and efficient way to handle large numbers of digital signatures with the same message. Recently, the privacy issue has been concerned about the topic of data sharing on the cloud. To provide the integrity, authenticity, authority, and privacy on the data sharing in the cloud storage, the notion of an aggregatable certificateless designated verifier signature scheme (ACLDVS) was proposed. ACLDVS also is a perfect tool to enable efficient privacy-preserving authentication systems for IoT and or the vehicular ad hoc networks (VANET). Our concrete scheme was proved to be secured underling of the Computational Diffie-Hellman assumption. Compared to other related schemes, our scheme is efficient, and the signature size is considerably short

    APEX2S: A Two-Layer Machine Learning Model for Discovery of host-pathogen protein-protein Interactions on Cloud-based Multiomics Data

    Get PDF
    Presented by the avalanche of biological interactions data, computational biology is now facing greater challenges on big data analysis and solicits more studies to mine and integrate cloud-based multiomics data, especially when the data are related to infectious diseases. Meanwhile, machine learning techniques have recently succeeded in different computational biology tasks. In this article, we have calibrated the focus for host-pathogen protein-protein interactions study, aiming to apply the machine learning techniques for learning the interactions data and making predictions. A comprehensive and practical workflow to harness different cloud-based multiomics data is discussed. In particular, a novel two-layer machine learning model, namely APEX2S, is proposed for discovery of the protein-protein interactions data. The results show that our model can better learn and predict from the accumulated host-pathogen protein-protein interactions

    CASCF: Certificateless Aggregated SignCryption Framework for Internet-of-Things Infrastructure

    Get PDF
    The increasing number of devices in the age of Internet-of-Thing (IoT) has arisen a number of problems related to security. Cryptographic processes, more precisely the signatures and the keys, increase and generate an overhead on the network resources with these huge connections. Therefore, in this paper we present a signcryption framework to address the above problems. The solution highlights the use of aggregate signcryption and certificaless approach based on bilinear pairings. The use of signcryption with aggregation and certificateless authentication reduces the time consumption, overhead and complexity. The solution is also able to solve the key staling problems. Experimental results and comparative analysis based on key parameters, memory utilization and bandwidth utilization have been measured. It confirms that the presented work is efficient for IoT infrastructure

    An Authenticated Key Agreement Scheme using Vector Decomposition

    Get PDF
    Encryption using vector decomposition problem (VDP) on higher dimensional vector spaces is a novel method in cryptography. Yoshida has shown that the VDP on a two-dimensional vector space is at least as hard as the computational Diffie-Hellman problem on a one-dimensional subspace under certain conditions. Steven Galbraith has shown that for certain curves, the VDP is at most as hard as the discrete logarithm problem on a one-dimensional subspace. Okomoto and Takashima proposed encryption scheme and signature schemes using VDP. An authenticated key agreement scheme using vector decomposition problem is proposed in this pape

    Research on security and privacy in vehicular ad hoc networks

    Get PDF
    Los sistemas de redes ad hoc vehiculares (VANET) tienen como objetivo proporcionar una plataforma para diversas aplicaciones que pueden mejorar la seguridad vial, la eficiencia del tráfico, la asistencia a la conducción, la regulación del transporte, etc. o que pueden proveer de una mejor información y entretenimiento a los usuarios de los vehículos. Actualmente se está llevando a cabo un gran esfuerzo industrial y de investigación para desarrollar un mercado que se estima alcance en un futuro varios miles de millones de euros. Mientras que los enormes beneficios que se esperan de las comunicaciones vehiculares y el gran número de vehículos son los puntos fuertes de las VANET, su principal debilidad es la vulnerabilidad a los ataques contra la seguridad y la privacidad.En esta tesis proponemos cuatro protocolos para conseguir comunicaciones seguras entre vehículos. En nuestra primera propuesta empleamos a todas las unidades en carretera (RSU) para mantener y gestionar un grupo en tiempo real dentro de su rango de comunicación. Los vehículos que entren al grupo de forma anónima pueden emitir mensajes vehículo a vehículo (V2V) que inmediatamente pueden ser verificados por los vehículos del mismo grupo (y grupos de vecinos). Sin embargo, en la primera fase del despliegue de este sistema las RSU pueden no estar bien distribuídas. Consecuentemente, se propone un conjunto de mecanismos para hacer frente a la seguridad, privacidad y los requisitos de gestión de una VANET a gran escala sin la suposición de que las RSU estén densamente distribuidas. La tercera propuesta se centra principalmente en la compresión de las evidencias criptográficas que nos permitirán demostrar, por ejemplo, quien era el culpable en caso de accidente. Por último, investigamos los requisitos de seguridad de los sistemas basados en localización (LBS) sobre VANETs y proponemos un nuevo esquema para la preservación de la privacidad de la localización en estos sistemas sobre dichas redes.Vehicular ad hoc network (VANET) systems aim at providing a platform for various applications that can improve traffic safety and efficiency, driver assistance, transportation regulation, infotainment, etc. There is substantial research and industrial effort to develop this market. It is estimated that the market for vehicular communications will reach several billion euros. While the tremendous benefits expected from vehicular communications and the huge number of vehicles are strong points of VANETs, their weakness is vulnerability to attacks against security and privacy.In this thesis, we propose four protocols for secure vehicle communications. In our first proposal, we employ each road-side unit (RSU) to maintain and manage an on-the-fly group within its communication range. Vehicles entering the group can anonymously broadcast vehicle-to-vehicle (V2V) messages, which can be instantly verified by the vehicles in the same group (and neighbor groups). However, at the early stage of VANET deployment, the RSUs may not be well distributed. We then propose a set of mechanisms to address the security, privacy, and management requirements of a large-scale VANET without the assumption of densely distributed RSUs. The third proposal is mainly focused on compressing cryptographic witnesses in VANETs. Finally, we investigate the security requirements of LBS in VANETs and propose a new privacy-preserving LBS scheme for those networks

    Certificateless Algorithm for Body Sensor Network and Remote Medical Server Units Authentication over Public Wireless Channels

    Get PDF
    Wireless sensor networks process and exchange mission-critical data relating to patients’ health status. Obviously, any leakages of the sensed data can have serious consequences which can endanger the lives of patients. As such, there is need for strong security and privacy protection of the data in storage as well as the data in transit. Over the recent past, researchers have developed numerous security protocols based on digital signatures, advanced encryption standard, digital certificates and elliptic curve cryptography among other approaches. However, previous studies have shown the existence of many security and privacy gaps that can be exploited by attackers to cause some harm in these networks. In addition, some techniques such as digital certificates have high storage and computation complexities occasioned by certificate and public key management issues. In this paper, a certificateless algorithm is developed for authenticating the body sensors and remote medical server units. Security analysis has shown that it offers data privacy, secure session key agreement, untraceability and anonymity. It can also withstand typical wireless sensor networks attacks such as impersonation, packet replay and man-in-the-middle. On the other hand, it is demonstrated to have the least execution time and bandwidth requirements

    Cryptographic Schemes based on Elliptic Curve Pairings

    Get PDF
    This thesis introduces the concept of certificateless public key cryptography (CLPKC). Elliptic curve pairings are then used to make concrete CL-PKC schemes and are also used to make other efficient key agreement protocols. CL-PKC can be viewed as a model for the use of public key cryptography that is intermediate between traditional certificated PKC and ID-PKC. This is because, in contrast to traditional public key cryptographic systems, CL-PKC does not require the use of certificates to guarantee the authenticity of public keys. It does rely on the use of a trusted authority (TA) who is in possession of a master key. In this respect, CL-PKC is similar to identity-based public key cryptography (ID-PKC). On the other hand, CL-PKC does not suffer from the key escrow property that is inherent in ID-PKC. Applications for the new infrastructure are discussed. We exemplify how CL-PKC schemes can be constructed by constructing several certificateless public key encryption schemes and modifying other existing ID based schemes. The lack of certificates and the desire to prove the schemes secure in the presence of an adversary who has access to the master key or has the ability to replace public keys, requires the careful development of new security models. We prove that some of our schemes are secure, provided that the Bilinear Diffie-Hellman Problem is hard. We then examine Joux’s protocol, which is a one round, tripartite key agreement protocol that is more bandwidth-efficient than any previous three-party key agreement protocol, however, Joux’s protocol is insecure, suffering from a simple man-in-the-middle attack. We show how to make Joux’s protocol secure, presenting several tripartite, authenticated key agreement protocols that still require only one round of communication. The security properties of the new protocols are studied. Applications for the protocols are also discussed

    Pairing-based cryptosystems and key agreement protocols.

    Get PDF
    For a long time, pairings on elliptic curves have been considered to be destructive in elliptic curve cryptography. Only recently after some pioneering works, particularly the well-known Boneh-Franklin identity-based encryption (IBE), pairings have quickly become an important tool to construct novel cryptographic schemes. In this thesis, several new cryptographic schemes with pairings are proposed, which are both efficient and secure with respect to a properly defined security model, and some relevant previous schemes are revisited. IBE provides a public key encryption mechanism where a public key can be an arbitrary string such as an entity identifier and unwieldy certificates are unnecessary. Based on the Sakai-Kasahara key construction, an IBE scheme which is secure in the Boneh-Franklin IBE model is constructed, and two identity-based key encapsulation mechanisms are proposed. These schemes achieve the best efficiency among the existing schemes to date. Recently Al-Riyami and Paterson introduced the certificateless public key encryption (CL-PKE) paradigm, which eliminates the need of certificates and at the same time retains the desirable properties of IBE without the key escrow problem. The security formulation of CL-PKE is revisited and a strong security model for this type of mechanism is defined. Following a heuristic approach, three efficient CL-PKE schemes which are secure in the defined strong security model are proposed. Identity-based two-party key agreement protocols from pairings are also investigated. The Bellare-Rogaway key agreement model is enhanced and within the model several previously unproven protocols in the literature are formally analysed. In considering that the user identity may be sensitive information in many environments, an identity-based key agreement protocol with unilateral identity privacy is proposed
    corecore