763 research outputs found

    Surface Defect Classification for Hot-Rolled Steel Strips by Selectively Dominant Local Binary Patterns

    Get PDF
    Developments in defect descriptors and computer vision-based algorithms for automatic optical inspection (AOI) allows for further development in image-based measurements. Defect classification is a vital part of an optical-imaging-based surface quality measuring instrument. The high-speed production rhythm of hot continuous rolling requires an ultra-rapid response to every component as well as algorithms in AOI instrument. In this paper, a simple, fast, yet robust texture descriptor, namely selectively dominant local binary patterns (SDLBPs), is proposed for defect classification. First, an intelligent searching algorithm with a quantitative thresholding mechanism is built to excavate the dominant non-uniform patterns (DNUPs). Second, two convertible schemes of pattern code mapping are developed for binary encoding of all uniform patterns and DNUPs. Third, feature extraction is carried out under SDLBP framework. Finally, an adaptive region weighting method is built for further strengthening the original nearest neighbor classifier in the feature matching stage. The extensive experiments carried out on an open texture database (Outex) and an actual surface defect database (Dragon) indicates that our proposed SDLBP yields promising performance on both classification accuracy and time efficiencyPeer reviewe

    Toward a General-Purpose Heterogeneous Ensemble for Pattern Classification

    Get PDF
    We perform an extensive study of the performance of different classification approaches on twenty-five datasets (fourteen image datasets and eleven UCI data mining datasets). The aim is to find General-Purpose (GP) heterogeneous ensembles (requiring little to no parameter tuning) that perform competitively across multiple datasets. The state-of-the-art classifiers examined in this study include the support vector machine, Gaussian process classifiers, random subspace of adaboost, random subspace of rotation boosting, and deep learning classifiers. We demonstrate that a heterogeneous ensemble based on the simple fusion by sum rule of different classifiers performs consistently well across all twenty-five datasets. The most important result of our investigation is demonstrating that some very recent approaches, including the heterogeneous ensemble we propose in this paper, are capable of outperforming an SVM classifier (implemented with LibSVM), even when both kernel selection and SVM parameters are carefully tuned for each dataset

    Face Detection for Augmented Reality Application Using Boosting-based Techniques

    Get PDF
    Augmented reality has gained an increasing research interest over the few last years. Customers requirements have become more intense and more demanding, the need of the different industries to re-adapt their products and enhance them by recent advances in the computer vision and more intelligence has become a necessary. In this work we present a marker-less augmented reality application that can be used and expanded in the e-commerce industry. We take benefit of the well known boosting techniques to train and evaluate different face detectors using the multi-block local binary features. The work purpose is to select the more relevant training parameters in order to maximize the classification accuracy. Using the resulted face detector, the position of the face will serve as a marker in the proposed augmented reality

    Contour and texture for visual recognition of object categories

    Get PDF
    The recognition of categories of objects in images has become a central topic in computer vision. Automatic visual recognition systems are rapidly becoming central to applications such as image search, robotics, vehicle safety systems, and image editing. This work addresses three sub-problems of recognition: image classification, object detection, and semantic segmentation. The task of classification is to determine whether an object of a particular category is present or not. Object detection aims to localize any objects of the category. Semantic segmentation is a more complete image understanding, whereby an image is partitioned into coherent regions that are assigned meaningful class labels. This thesis proposes novel discriminative learning approaches to these problems. Our primary contributions are threefold. Firstly, we demonstrate that the contours (the outline and interior edges) of an object are, alone, sufficient for accurate visual recognition. Secondly, we propose two powerful new feature types: (i) a learned codebook of contour fragments matched with an improved oriented chamfer distance, and (ii) a set of texture-based features that simultaneously exploit local appearance, approximate shape, and appearance context. The efficacy of these new features types is evaluated on a wide variety of datasets. Thirdly, we show how, in combination, these two largely orthogonal feature types can substantially improve recognition performance above that achieved by either alone
    • …
    corecore