179 research outputs found

    Digital Watermarking using Multiscale Ridgelet Transform

    Get PDF
    The multi-resolution watermarking method for digital images proposed in this work. The multiscale ridgelet coefficients of low and high frequency bands of the watermark is embedded to the most significant coefficients at low and high frequency bands of the multiscale ridgelet of an host image, respectively. A multi-resolution nature of multiscale ridgelet transform is exploiting in the process of edge detection. Experimental results of the proposed watermarking method are compared with the previously available watermarking algorithm wavelet transform. Moreover, the proposed watermarking method also tested on images attached by Discrete Cosine Transform (DCT) and wavelet based lossy image compression techniques

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    Application of Stochastic Diffusion for Hiding High Fidelity Encrypted Images

    Get PDF
    Cryptography coupled with information hiding has received increased attention in recent years and has become a major research theme because of the importance of protecting encrypted information in any Electronic Data Interchange system in a way that is both discrete and covert. One of the essential limitations in any cryptography system is that the encrypted data provides an indication on its importance which arouses suspicion and makes it vulnerable to attack. Information hiding of Steganography provides a potential solution to this issue by making the data imperceptible, the security of the hidden information being a threat only if its existence is detected through Steganalysis. This paper focuses on a study methods for hiding encrypted information, specifically, methods that encrypt data before embedding in host data where the ‘data’ is in the form of a full colour digital image. Such methods provide a greater level of data security especially when the information is to be submitted over the Internet, for example, since a potential attacker needs to first detect, then extract and then decrypt the embedded data in order to recover the original information. After providing an extensive survey of the current methods available, we present a new method of encrypting and then hiding full colour images in three full colour host images with out loss of fidelity following data extraction and decryption. The application of this technique, which is based on a technique called ‘Stochastic Diffusion’ are wide ranging and include covert image information interchange, digital image authentication, video authentication, copyright protection and digital rights management of image data in general

    Dynamic S-Box and PWLCM-Based Robust Watermarking Scheme

    Get PDF
    Due to the increased number of cyberattacks, numerous researchers are motivated towards the design of such schemes that can hide digital information in a signal. Watermarking is one of the promising technologies that can protect digital information. However, traditional watermarking schemes are either slow or less secure. In this paper, a dynamic S-Box based efficient watermarking scheme is presented. The original image was extracted at the receiver’s end without any loss of sensitive information. Firstly, the Secure Hash Algorithm is applied to the original image for the generation of the initial condition. Piece Wise Linear Chaotic Map is then used to generate 16 × 16 dynamic Substitution Box (S-Box). As an additional security feature, the watermark is substituted through dynamic S-Box. Hence, it is hard for the eavesdroppers to attack the proposed scheme due to the dynamic nature of S-Box. Lastly, lifting wavelet transform is applied to the host image and the High Low and High High blocks of host image are replaced with least significant bits and most significant bits of the substituted watermark, respectively. Robustness, efficiency and security of the proposed scheme is verified using Structure Similarity Index, Structure Dissimilarity Index, Structure Content, Mutual Information, energy, entropy, correlation tests and classical attacks analysis

    Tchebichef image watermarking along the edge using YCoCg-R color space for copyright protection

    Get PDF
    Easy creation and manipulation of digital images present the potential danger of counterfeiting and forgery. Watermarking technique which embeds a watermark into the images can be used to overcome these problems and to provide copyright protection. Digital image watermarking should meet requirements, e.g. maintain image quality, difficult to remove the watermark, quality of watermark extraction, and applicable. This research proposes Tchebichef watermarking along the edge based on YCoCg-R color space. The embedding region is selected by considering the human visual characteristics (HVC) entropy. The selected blocks with minimum of HVC entropy values are transformed by Tchebichef moments. The locations of C(0,1), C(1,0), C(0,2) and C(2,0) of the matrix moment are randomly embedded for each watermark bit. The proposed watermarking scheme produces a good imperceptibility by average SSIM value around 0.98. The watermark recovery has greater resistant after several types of attack than other schemes. © 2019 Institute of Advanced Engineering and Science. All rights reserved

    The Most Common Characteristics of Fragile Video Watermarking: A Review

    Get PDF
    The progress of network and multimedia technologies has been phenomenal during the previous two decades. Unauthorized users will be able to copy, retransmit, modify reproduction, and upload the contents more easily as a result of this innovation. Malicious attackers are quite concerned about the development and widespread use of digital video. Digital watermarking technology gives solutions to the aforementioned problems. Watermarking methods can alleviate these issues by embedding a secret watermark in the original host data, allowing the genuine user or file owner to identify any manipulation. In this study, lots of papers have been analyzed and studied carefully, in the period 2011–2022. The historical basis of the subject should not be forgotten so studying old research will give a clear idea of the topic. To aid future researchers in this subject, we give a review of fragile watermarking approaches and some related papers presented in recent years. This paper presents a comparison of many relevant works in this field based on some of the outcomes and improvements gained in these studies, which focuses on the common characteristics that increase the effect of watermarking techniques such as invisibility, tamper detection, recovery, and security &nbsp
    • 

    corecore