499 research outputs found

    SGD Frequency-Domain Space-Frequency Semiblind Multiuser Receiver with an Adaptive Optimal Mixing Parameter

    Get PDF
    A novel stochastic gradient descent frequency-domain (FD) space-frequency (SF) semiblind multiuser receiver with an adaptive optimal mixing parameter is proposed to improve performance of FD semiblind multiuser receivers with a fixed mixing parameters and reduces computational complexity of suboptimal FD semiblind multiuser receivers in SFBC downlink MIMO MC-CDMA systems where various numbers of users exist. The receiver exploits an adaptive mixing parameter to mix information ratio between the training-based mode and the blind-based mode. Analytical results prove that the optimal mixing parameter value relies on power and number of active loaded users existing in the system. Computer simulation results show that when the mixing parameter is adapted closely to the optimal mixing parameter value, the performance of the receiver outperforms existing FD SF adaptive step-size (AS) LMS semiblind based with a fixed mixing parameter and conventional FD SF AS-LMS training-based multiuser receivers in the MSE, SER and signal to interference plus noise ratio in both static and dynamic environments

    Wireless Channel Equalization in Digital Communication Systems

    Get PDF
    Our modern society has transformed to an information-demanding system, seeking voice, video, and data in quantities that could not be imagined even a decade ago. The mobility of communicators has added more challenges. One of the new challenges is to conceive highly reliable and fast communication system unaffected by the problems caused in the multipath fading wireless channels. Our quest is to remove one of the obstacles in the way of achieving ultimately fast and reliable wireless digital communication, namely Inter-Symbol Interference (ISI), the intensity of which makes the channel noise inconsequential. The theoretical background for wireless channels modeling and adaptive signal processing are covered in first two chapters of dissertation. The approach of this thesis is not based on one methodology but several algorithms and configurations that are proposed and examined to fight the ISI problem. There are two main categories of channel equalization techniques, supervised (training) and blind unsupervised (blind) modes. We have studied the application of a new and specially modified neural network requiring very short training period for the proper channel equalization in supervised mode. The promising performance in the graphs for this network is presented in chapter 4. For blind modes two distinctive methodologies are presented and studied. Chapter 3 covers the concept of multiple cooperative algorithms for the cases of two and three cooperative algorithms. The select absolutely larger equalized signal and majority vote methods have been used in 2-and 3-algoirithm systems respectively. Many of the demonstrated results are encouraging for further research. Chapter 5 involves the application of general concept of simulated annealing in blind mode equalization. A limited strategy of constant annealing noise is experimented for testing the simple algorithms used in multiple systems. Convergence to local stationary points of the cost function in parameter space is clearly demonstrated and that justifies the use of additional noise. The capability of the adding the random noise to release the algorithm from the local traps is established in several cases

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.

    Data Detection and Channel Estimation of OFDM Systems Using Differential Modulation

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation technique which is robust against multipath fading and very easy to implement in transmitters and receivers using the inverse fast Fourier transform and the fast Fourier transform. A guard interval using cyclic prefix is inserted in each OFDM symbol to avoid the inter-symbol interference. This guard interval should be at least equal to, or longer than the maximum delay spread of the channel to combat against inter-symbol interference properly. In coherent detection, channel estimation is required for the data detection of OFDM systems to equalize the channel effects. One of the popular techniques is to insert pilot tones (reference signals) in OFDM symbols. In conventional method, pilot tones are inserted into every OFDM symbols. Channel capacity is wasted due to the transmission of a large number of pilot tones. To overcome this transmission loss, incoherent data detection is introduced in OFDM systems, where it is not needed to estimate the channel at first. We use differential modulation based incoherent detection in this thesis for the data detection of OFDM systems. Data can be encoded in the relative phase of consecutive OFDM symbols (inter-frame modulation) or in the relative phase of an OFDM symbol in adjacent subcarriers (in-frame modulation). We use higher order differential modulation for in-frame modulation to compare the improvement of bit error rate. It should be noted that the single differential modulation scheme uses only one pilot tone, whereas the double differential uses two pilot tones and so on. Thus overhead due to the extra pilot tones in conventional methods are minimized and the detection delay is reduced. It has been observed that the single differential scheme works better in low SNRs (Signal to Noise Ratios) with low channel taps and the double differential works better at higher SNRs. Simulation results show that higher order differential modulation schemes don¡¯t have any further advantages. For inter-frame modulation, we use single differential modulation where only one OFDM symbol is used as a reference symbol. Except the reference symbol, no other overhead is required. We also perform channel estimation using differential modulation. Channel estimation using differential modulation is very easy and channel coefficients can be estimated very accurately without increasing any computational complexity. Our simulation results show that the mean square channel estimation error is about ¡¼10¡½^(-2) at an SNR of 30 dB for double differential in-frame modulation scheme, whereas channel estimation error is about ¡¼10¡½^(-4) for single differential inter-frame modulation. Incoherent data detection using classical DPSK (Differential Phase Shift Keying) causes an SNR loss of approximately 3 dB compared to coherent detection. But in our method, differential detection can estimate the channel coefficients very accurately and our estimated channel can be used in simple coherent detection to improve the system performance and minimize the SNR loss that happens in conventional method

    Preprint: Using RF-DNA Fingerprints To Classify OFDM Transmitters Under Rayleigh Fading Conditions

    Full text link
    The Internet of Things (IoT) is a collection of Internet connected devices capable of interacting with the physical world and computer systems. It is estimated that the IoT will consist of approximately fifty billion devices by the year 2020. In addition to the sheer numbers, the need for IoT security is exacerbated by the fact that many of the edge devices employ weak to no encryption of the communication link. It has been estimated that almost 70% of IoT devices use no form of encryption. Previous research has suggested the use of Specific Emitter Identification (SEI), a physical layer technique, as a means of augmenting bit-level security mechanism such as encryption. The work presented here integrates a Nelder-Mead based approach for estimating the Rayleigh fading channel coefficients prior to the SEI approach known as RF-DNA fingerprinting. The performance of this estimator is assessed for degrading signal-to-noise ratio and compared with least square and minimum mean squared error channel estimators. Additionally, this work presents classification results using RF-DNA fingerprints that were extracted from received signals that have undergone Rayleigh fading channel correction using Minimum Mean Squared Error (MMSE) equalization. This work also performs radio discrimination using RF-DNA fingerprints generated from the normalized magnitude-squared and phase response of Gabor coefficients as well as two classifiers. Discrimination of four 802.11a Wi-Fi radios achieves an average percent correct classification of 90% or better for signal-to-noise ratios of 18 and 21 dB or greater using a Rayleigh fading channel comprised of two and five paths, respectively.Comment: 13 pages, 14 total figures/images, Currently under review by the IEEE Transactions on Information Forensics and Securit

    Transform modulations for mobile communications

    Get PDF
    A new modulation scheme called transform modulations is proposed which improves the system performance in frequency-flat fading mobile channels. They ameliorate the effect of the fadings over the transmitted signal by spreading the information in time, using a linear transform operator. The design of this scheme is discussed and its advantages are shown by means of simulations. The relationship of this scheme with OFDM modulation is also analyzed.Peer ReviewedPostprint (published version

    Doctor of Philosophy

    Get PDF
    dissertationThe demand for high speed communication has been increasing in the past two decades. Multicarrier communication technology has been suggested to address this demand. Orthogonal frequency-division multiplexing (OFDM) is the most widely used multicarrier technique. However, OFDM has a number of disadvantages in time-varying channels, multiple access, and cognitive radios. On the other hand, filterbank multicarrier (FBMC) communication has been suggested as an alternative to OFDM that can overcome the disadvantages of OFDM. In this dissertation, we investigate the application of filtered multitone (FMT), a subset of FBMC modulation methods, to slow fading and fast fading channels. We investigate the FMT transmitter and receiver in continuous and discrete time domains. An efficient implementation of FMT systems is derived and the conditions for perfect reconstruction in an FBMC communication system are presented. We derive equations for FMT in slow fading channels that allow evaluation of FMT when applied to mobile wireless communication systems. We consider using fractionally spaced per tone channel equalizers with different number of taps. The numerical results are presented to investigate the performance of these equalizers. The numerical results show that single-tap equalizers suffice for typical wireless channels. The equalizer design study is advanced by introducing adaptive equalizers which use channel estimation. We derive equations for a minimum mean square error (MMSE) channel estimator and improve the channel estimation by considering the finite duration of channel impulse response. The results of optimum equalizers (when channel is known perfectly) are compared with those of the adaptive equalizers, and it is found that a loss of 1 dB or less incurs. We also introduce a new form of FMT which is specially designed to handle doubly dispersive channels. This method is called FMT-dd (FMT for doubly dispersive channels). The proposed FMT-dd is applied to two common methods of data symbol orientation in the time-frequency space grid; namely, rectangular and hexagonal lattices. The performance of these methods along with OFDM and the conventional FMT are compared and a significant improvement in performance is observed. The FMT-dd design is applied to real-world underwater acoustic (UWA) communication channels. The experimental results from an at-sea experiment (ACOMM10) show that this new design provides a significant gain over OFDM. The feasibility of implementing a MIMO system for multicarrier UWA communication channels is studied through computer simulations. Our study emphasizes the bandwidth efficiency of multicarrier MIMO communications .We show that the value of MIMO to UWA communication is very limited
    • …
    corecore