101 research outputs found

    Spectral, Energy and Computation Efficiency in Future 5G Wireless Networks

    Get PDF
    Wireless technology has revolutionized the way people communicate. From first generation, or 1G, in the 1980s to current, largely deployed 4G in the 2010s, we have witnessed not only a technological leap, but also the reformation of associated applications. It is expected that 5G will become commercially available in 2020. 5G is driven by ever-increasing demands for high mobile traffic, low transmission delay, and massive numbers of connected devices. Today, with the popularity of smart phones, intelligent appliances, autonomous cars, and tablets, communication demands are higher than ever, especially when it comes to low-cost and easy-access solutions. Existing communication architecture cannot fulfill 5G’s needs. For example, 5G requires connection speeds up to 1,000 times faster than current technology can provide. Also, from transmitter side to receiver side, 5G delays should be less than 1ms, while 4G targets a 5ms delay speed. To meet these requirements, 5G will apply several disruptive techniques. We focus on two of them: new radio and new scheme. As for the former, we study the non-orthogonal multiple access (NOMA) and as for the latter, we use mobile edge computing (MEC). Traditional communication systems allow users to communicate alternatively, which clearly avoids inter-user interference, but also caps the connection speed. NOMA, on the other hand, allows multiple users to transmit simultaneously. While NOMA will inevitably cause excessive interference, we prove such interference can be mitigated by an advanced receiver side technique. NOMA has existed on the research frontier since 2013. Since that time, both academics and industry professionals have extensively studied its performance. In this dissertation, our contribution is to incorporate NOMA with several potential schemes, such as relay, IoT, and cognitive radio networks. Furthermore, we reviewed various limitations on NOMA and proposed a more practical model. In the second part, MEC is considered. MEC is a transformation from the previous cloud computing system. In particular, MEC leverages powerful devices nearby and instead of sending information to distant cloud servers, the transmission occurs in closer range, which can effectively reduce communication delay. In this work, we have proposed a new evaluation metric for MEC which can more effectively leverage the trade-off between the amount of computation and the energy consumed thereby. A practical communication system for wearable devices is proposed in the last part, which combines all the techniques discussed above. The challenges for wearable communication are inherent in its diverse needs, as some devices may require low speed but high reliability (factory sensors), while others may need low delay (medical devices). We have addressed these challenges and validated our findings through simulations

    Power Minimization Resource Allocation for Underlay MISO-NOMA SWIPT Systems

    Get PDF
    The combination of cognitive radio and non-orthogonal multiple access (NOMA) has tremendous potential to achieve high spectral efficiency in the IoT era. In this paper, we focus on the energy-efficient resource allocation of a cognitive multiple-input single-output NOMA system with the aid of simultaneous wireless information and power transfer. Specifically, a non-linear energy harvesting (EH) model is adopted to characterize the non-linear energy conversion property. In order to achieve the green design goal, we aim for the minimization of the system power consumption by jointly designing the transmit beamformer and the receive power splitter subject to the information transmission and EH harvesting requirements of second users (SUs), and the maximum tolerable interference constraints at primary users. However, the formulated optimization problem is non-convex and hard to tackle. By exploiting the classic semi-definite relaxation and successive convex approximation, we propose a penalty function-based algorithm to solve the non-convex problem. The convergence of the proposed algorithm is further proved. Finally, simulation results demonstrate that the non-linear EH model is able to strongly reflect the property of practical energy harvester and the performance gain of the proposed algorithm than the baseline scheme

    Multi-Objective Optimization for Spectrum and Energy Efficiency Tradeoff in IRS-Assisted CRNs with NOMA

    Get PDF
    Non-orthogonal multiple access (NOMA) is a promising candidate for the sixth generation wireless communication networks due to its high spectrum efficiency (SE), energy efficiency (EE), and better connectivity. It can be applied in cognitive radio networks (CRNs) to further improve SE and user connectivity. However, the interference caused by spectrum sharing and the utilization of non-orthogonal resources can downgrade the achievable performance. In order to tackle this issue, intelligent reflecting surface (IRS) is exploited in a downlink multiple-input-single-output (MISO) CRN with NOMA. To realize a desirable tradeoff between SE and EE, a multi-objective optimization (MOO) framework is formulated under both the perfect and imperfect channel state information (CSI). An iterative block coordinate descent (BCD)-based algorithm is exploited to optimize the beamforming design and IRS reflection coefficients iteratively under the perfect CSI case. A safe approximation and the S-procedure are used to address the non-convex infinite inequality constraints of the problem under the imperfect CSI case. Simulation results demonstrate that the proposed scheme can achieve a better balance between SE and EE than baseline schemes. Moreover, it is shown that both SE and EE of the proposed algorithm under the imperfect CSI can be significantly improved by exploiting IRS

    Spectrum and Energy Efficiency Tradeoff in IRS-Assisted CRNs with NOMA: A Multi-Objective Optimization Framework

    Get PDF
    Non-orthogonal multiple access (NOMA) is a promising candidate for the sixth generation wireless communication networks due to its high spectrum efficiency (SE), energy efficiency (EE), and better connectivity. It can be applied in cognitive radio networks (CRNs) to further improve SE and user connectivity. However, the interference caused by spectrum sharing and the utilization of non-orthogonal resources can downgrade the achievable performance. In order to tackle this issue, intelligent reflecting surface (IRS) is exploited in a downlink multiple-input-single-output (MISO) CRN with NO-MA. To realize a desirable tradeoff between SE and EE, a multi-objective optimization (MOO) framework is formulated. An iterative block coordinate descent (BCD)-based algorithm is exploited to optimize the beamforming design and IRS reflection coefficients iteratively. Simulation results demonstrate that the proposed scheme can achieve a better balance between SE and EE than baseline schemes

    A Joint Beamforming and Power-splitter Optimization Technique for SWIPT in MISO-NOMA System

    Get PDF
    In this paper, we propose a joint beamforming and power-splitter optimization technique for simultaneous wireless power and information transfer in the downlink transmission of a multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) system. Accordingly, each user employs a power splitter to decompose the received signal into two parts, namely, the information decoding and energy harvesting. The former part is used to decode the corresponding transmitted information, whereas the latter part is utilized for harvesting energy. For this system model, we solve an energy harvesting problem with a set of design constraints at the transmitter and the receiver ends. In particular, the beamforming vector and the power splitting ratio for each user are jointly designed such that the overall harvested power is maximized subject to minimum per-user rate requirements and the available power budget constraints at the base station. As the formulated problem turns out to be non-convex in terms of the design parameters, we propose a sequential convex approximation technique and demonstrate a superior performance compared to a baseline scheme

    Hybrid User Pairing for Spectral and Energy Efficiencies in Multiuser MISO-NOMA Networks with SWIPT

    Get PDF
    In this paper, we propose a novel hybrid user pairing (HUP) scheme in multiuser multiple-input single-output nonorthogonal multiple access networks with simultaneous wireless information and power transfer. In this system, two information users with distinct channel conditions are optimally paired while energy users perform energy harvesting (EH) under non-linearity of the EH circuits. We consider the problem of jointly optimizing user pairing and power allocation to maximize the overall spectral efficiency (SE) and energy efficiency (EE) subject to userspecific quality-of-service and harvested power requirements. A new paradigm for the EE-EH trade-off is then proposed to achieve a good balance of network power consumption. Such design problems are formulated as the maximization of nonconcave functions subject to the class of mixed-integer non-convex constraints, which are very challenging to solve optimally. To address these challenges, we first relax binary pairing variables to be continuous and transform the design problems into equivalent non-convex ones, but with more tractable forms. We then develop low-complexity iterative algorithms to improve the objectives and converge to a local optimum by means of the inner approximation framework. Simulation results show the convergence of proposed algorithms and the SE and EE improvements of the proposed HUP scheme over state-of-the-art designs. In addition, the effects of key parameters such as the number of antennas and dynamic power at the BS, target data rates, and energy threshold, on the system performance are evaluated to show the effectiveness of the proposed schemes in balancing resource utilization

    A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    IEEE Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area
    • …
    corecore