40 research outputs found

    The Role of Physical Layer Security in Satellite-Based Networks

    Full text link
    In the coming years, 6G will revolutionize the world with a large amount of bandwidth, high data rates, and extensive coverage in remote and rural areas. These goals can only be achieved by integrating terrestrial networks with non-terrestrial networks. On the other hand, these advancements are raising more concerns than other wireless links about malicious attacks on satellite-terrestrial links due to their openness. Over the years, physical layer security (PLS) has emerged as a good candidate to deal with security threats by exploring the randomness of wireless channels. In this direction, this paper reviews how PLS methods are implemented in satellite communications. Firstly, we discuss the ongoing research on satellite-based networks by highlighting the key points in the literature. Then, we revisit the research activities on PLS in satellite-based networks by categorizing the different system architectures. Finally, we highlight research directions and opportunities to leverage the PLS in future satellite-based networks

    Rate-splitting multiple access for non-terrestrial communication and sensing networks

    Get PDF
    Rate-splitting multiple access (RSMA) has emerged as a powerful and flexible non-orthogonal transmission, multiple access (MA) and interference management scheme for future wireless networks. This thesis is concerned with the application of RSMA to non-terrestrial communication and sensing networks. Various scenarios and algorithms are presented and evaluated. First, we investigate a novel multigroup/multibeam multicast beamforming strategy based on RSMA in both terrestrial multigroup multicast and multibeam satellite systems with imperfect channel state information at the transmitter (CSIT). The max-min fairness (MMF)-degree of freedom (DoF) of RSMA is derived and shown to provide gains compared with the conventional strategy. The MMF beamforming optimization problem is formulated and solved using the weighted minimum mean square error (WMMSE) algorithm. Physical layer design and link-level simulations are also investigated. RSMA is demonstrated to be very promising for multigroup multicast and multibeam satellite systems taking into account CSIT uncertainty and practical challenges in multibeam satellite systems. Next, we extend the scope of research from multibeam satellite systems to satellite- terrestrial integrated networks (STINs). Two RSMA-based STIN schemes are investigated, namely the coordinated scheme relying on CSI sharing and the co- operative scheme relying on CSI and data sharing. Joint beamforming algorithms are proposed based on the successive convex approximation (SCA) approach to optimize the beamforming to achieve MMF amongst all users. The effectiveness and robustness of the proposed RSMA schemes for STINs are demonstrated. Finally, we consider RSMA for a multi-antenna integrated sensing and communications (ISAC) system, which simultaneously serves multiple communication users and estimates the parameters of a moving target. Simulation results demonstrate that RSMA is beneficial to both terrestrial and multibeam satellite ISAC systems by evaluating the trade-off between communication MMF rate and sensing Cramer-Rao bound (CRB).Open Acces

    SLNR-based Secure Energy Efficient Beamforming in Multibeam Satellite Systems

    Get PDF
    Motivated by the fact that both security and energy efficiency are the fundamental requirements and design targets of future satellite communications, this letter investigates secure energy efficient beamforming in multibeam satellite systems, where the satellite user in each beam is surrounded by an eavesdropper attempting to intercept the confidential information. To simul- taneously improve the transmission security and reduce power consumption, our design objective is to maximize the system secrecy energy efficiency (SEE) under the constraint of total transmit power budget. Different from the existing schemes with high complexity, we propose an alternating optimization scheme to address the SEE problem by decomposing the original nonconvex problem into subproblems. Specifically, we first utilize the signal- to-leakage-plus-noise ratio (SLNR) metric to obtain closed-form normalized beamforming weight vectors, while the successive convex approximation (SCA) method is used to efficiently solve the power allocation subproblem. Then, an iterative algorithm is proposed to obtain the suboptimal solutions. Finally, simulation results are provided to verify the superiority of the proposed scheme compared to the benchmark scheme

    Joint beamforming design for secure RIS-assisted IoT networks

    Get PDF
    This paper studies secure communication in an internet-of-things (IoT) network, where the confidential signal is sent by an active refracting reconfigurable intelligent surface (RIS)-based transmitter, and a passive reflective RIS is utilized to improve the secrecy performance of users in the presence of multiple eavesdroppers. Specifically, we aim to maximize the weighted sum secrecy rate by jointly designing the power allocation, transmit beamforming (BF) of the refracting RIS, and the phase shifts of the reflective RIS. To solve the non-convex optimization problem, we propose a linearization method to approximate the objective function into a linear form. Then, an alternating optimization (AO) scheme is proposed to jointly optimize the power allocation factors, BF vector and phase shifts, where the first one is found using the Lagrange dual method, while the latter two are obtained by utilizing the penalty dual decomposition method. Moreover, considering the demands of green and secure communications, by applying the Dinkelbach’s method, we extend our proposed scheme to solving a secrecy energy maximization problem. Finally, simulation results demonstrate the effectiveness of the proposed design

    Symbol-level and Multicast Precoding for Multiuser Multiantenna Downlink: A State-of-the-art, Classification and Challenges

    Get PDF
    Precoding has been conventionally considered as an effective means of mitigating or exploiting the interference in the multiantenna downlink channel, where multiple users are simultaneously served with independent information over the same channel resources. The early works in this area were focused on transmitting an individual information stream to each user by constructing weighted linear combinations of symbol blocks (codewords). However, more recent works have moved beyond this traditional view by: i) transmitting distinct data streams to groups of users and ii) applying precoding on a symbol-per-symbol basis. In this context, the current survey presents a unified view and classification of precoding techniques with respect to two main axes: i) the switching rate of the precoding weights, leading to the classes of block-level and symbol-level precoding, ii) the number of users that each stream is addressed to, hence unicast, multicast, and broadcast precoding. Furthermore, the classified techniques are compared through representative numerical results to demonstrate their relative performance and uncover fundamental insights. Finally, a list of open theoretical problems and practical challenges are presented to inspire further research in this area
    corecore